Characterization factors for zinc terrestrial ecotoxicity including speciation

  • Geneviève Plouffe
  • Cécile Bulle
  • Louise Deschênes



Ignoring metal speciation in the determination of characterization factors (CFs) in life cycle assessment (LCA) could significantly alter the validity of LCA results since toxicity is directly linked to bioavailability.


Zinc terrestrial ecotoxicity CFs are obtained using modified USEtox fate factors, WHAM 6.0-derived bioavailable factors, and effect factors calculated using the assessment of mean impact (AMI) method with available terrestrial ecotoxicity data. Soil archetypes created using influent soil properties on Zn speciation (soil texture, pH, cation exchange capacity, organic matter and carbonate contents) are used to group soils of the world into a more manageable spatial resolution for LCA. An aggregated global CF value is obtained using population density as a Zn emission proxy. Results are presented in a world map to facilitate use.

Results and discussion

When using soluble Zn as the bioavailable fraction, CF values vary over 1.76 orders of magnitude, indicating that a single aggregated value could reasonably be used for the world. When using true solution Zn, CFs cover 14 orders of magnitude. To represent this variability, 518 archetypes and 13 groups of archetypes were created. Aggregated global default values are 4.58 potentially affected fraction of species (PAF) m3·day kg−1 for soluble Zn and 1.45 PAF m3·day kg−1 for true solution Zn. These values are respectively 28 and 88 times lower than the Zn terrestrial CF in IMPACT 2002 (128 PAF m3·day kg−1).


The CFs obtained for Zn, except for soluble Zn, are at least 2 orders of magnitude lower than current CFs. However, they must be tested in case studies to measure the impact of including Zn speciation in the CF definition of terrestrial ecotoxicity.


Bioavailability Life cycle impact assessment Metal speciation Modeling Terrestrial ecotoxicity Zinc 

Supplementary material

11367_2016_1037_MOESM1_ESM.docx (534 kb)
ESM 1(DOCX 534 kb)


  1. An J, Jeong S, Moon HS, Jho EH, Nam K (2012) Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil. J Hazard Mater 203–204:69–76CrossRefGoogle Scholar
  2. Bertling S, Wallinder IO, Leygraf C, Kleja DB (2006) Occurrence and fate of corrosion-induced zinc in runoff water from external structures. Sci Total Environ 367:908–923CrossRefGoogle Scholar
  3. Brennan RF (2005) Zinc Application and Its Availability to Plants. Murdoch UniversityGoogle Scholar
  4. Campbell PGC, Errécalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp Biochem Physiol Part C 133:189–206Google Scholar
  5. Christiansen KS, Holm PE, Borggaard OK, Hauschild MZ (2011) Addressing speciation in the effect factor for characterisation of freshwater ecotoxicity - the case of copper. Int J Life Cycle Assess 16:761–773Google Scholar
  6. CIESIN-Columbia-University-FAO-CIAT (2005) Gridded Population of the World: Future Estimates (GPWFE). Socioeconomic Data and Applications Center (SEDAC), Columbia University, Palisades, NYGoogle Scholar
  7. CITEPA (2014) Zinc-Zn. Centre Interprofessionnel Technique d'Études de la Pollution Atmosphérique. Accessed 2014-09-19
  8. de Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54CrossRefGoogle Scholar
  9. Diamond ML et al (2010) The clearwater consensus: the estimation of metal hazard in freshwater. Int J Life Cycle Assess 15:143–147CrossRefGoogle Scholar
  10. Dong Y, Gandhi N, Hauschild MZ (2014) Development of comparative toxicity potentials of 14 cationic metals in freshwater. Chemosphere 112:26–33CrossRefGoogle Scholar
  11. EPA (2011) Common Contaminants - Fact Flash - Zinc. EPA. Accessed 2014-09-19
  12. FAO/IIASA/ISRIC/ISS-CAS/JRC (2009) Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, AustriaGoogle Scholar
  13. Gandhi N, Diamond M, van de meent D, Huijbregts MAJ, Peijnenburg WJGM, Guinée J (2010) New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ Sci Technol 44:5195–5201CrossRefGoogle Scholar
  14. Gandhi N, Diamond ML, Huijbregts MAJ, Guinée JB, Peijnenburg WJGM, van de Meent D (2011) Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. Int J Life Cycle Assess 16:774–787CrossRefGoogle Scholar
  15. Gerberding JL (2005) Toxicological Profile for Zinc. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease RegistryGoogle Scholar
  16. Groenenberg JE, Dijkstra JJ, Bonten LTC, De vries W, Comans RNJ (2012) Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Environ Pollut 166:98–107CrossRefGoogle Scholar
  17. Hauschild M (2007) International consensus model for comparative assessment of chemiclas. SETAC Europe Annual Meeting 2007Google Scholar
  18. Hauschild MZ et al (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697CrossRefGoogle Scholar
  19. Hauschild MZ, McKone TE, van de meent D, Huijbregts M, Margni M, Rosenbaum RK, Jolliet O (2010) USEtoxTM 1.01 - UNEP/SETAC model for the comparative assessment of chemicals released to air, water and soil and their toxic effects on the human population and ecosystems. UNEP/SETACGoogle Scholar
  20. Haye S, Slaveykova VI, Payet J (2007) Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA). Chemosphere 68:1489–1496CrossRefGoogle Scholar
  21. Huijbregts M, Hauschild M, Jolliet O, Margni M, McKone T, Rosenbaum RK, van de meent D (2010) USEtox User manual. USEtox TeamGoogle Scholar
  22. Humbert S, Margni M, Jolliet O (2005) IMPACT 2002+: User Guide - Draft for version 2.1. École Polytechnique Fédérale de LausanneGoogle Scholar
  23. IREP (2012) Exploitation des résultats réalisés à partir des déclarations 2012 des émissions industrielles - Zinc et ses composés (Zn). Registre Français des Émissions Polluantes. IREP-INERIS, FranceGoogle Scholar
  24. JRC-IHCP (2008) European Union Risk Assessment Report - Zinc Metal. European Commission Joint Research Centre Institute for Health and Consumer ProtectionGoogle Scholar
  25. Koster M, de Groot A, Vijver M, Peijnenburg W (2006) Copper in the terrestrial environment: verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biol Biochem 38:1788–1796CrossRefGoogle Scholar
  26. Larsen HF, Hauschild M (2007a) Evaluation of ecotoxicity effect indicators for use in LCIA. Int J Life Cycle Assess 12:24–33,24CrossRefGoogle Scholar
  27. Larsen HF, Hauschild M (2007b) GM-Troph a low data demand ecotoxicity effect indicator for use in LCIA. Int J Life Cycle Assess 12:79–91CrossRefGoogle Scholar
  28. Lautier A, Rosenbaum RK, Margni M, Bare J, Roy P-O, Deschênes L (2010) Development of normalization factors for Canada and the United States and comparison with European factors. Sci Total Environ 409:33–42CrossRefGoogle Scholar
  29. Lessard I (2013) Détermination de la toxicité à long-terme du zinc sur la diversité fonctionnelle enzymatique de sols contaminés collectés sur le terrain. Université de MontréalGoogle Scholar
  30. Leveque T et al (2013) Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eisenia hortensis and Lumbricus terrestris). Environ Pollut 179:232–241CrossRefGoogle Scholar
  31. Ligthart T et al. Declaration of Apeldoorn on LCIA of Non-Ferro Metals. In: Workshop organised by TNO and CML, Apeldoorn, Netherlands, April 15th, 2004 2004. pp 1–2Google Scholar
  32. Ligthart TN, Jongbloed RH, Tamis JE (2010) A method for improving Centre for Environmental Studies (CML) characterisation factors for metal (eco)toxicity—the case of zinc gutters and downpipes. Int J Life Cycle Assess 15:745–756CrossRefGoogle Scholar
  33. Lock K, de Schamphelaere KAC, Becaus S, Criel P, van Eeckhout H, Janssen CR (2007) Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare). Environ Pollut 147:626–633CrossRefGoogle Scholar
  34. Lofts S et al (2013) Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. Environ Pollut 178:244–253CrossRefGoogle Scholar
  35. Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192CrossRefGoogle Scholar
  36. Owsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ (2013) Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ Sci Technol 47:3241–3250CrossRefGoogle Scholar
  37. Payet J (2004) Assessing Toxic Impacts on Aquatic Ecosystems in Life Cycle Assessment. École Polytechnique Fédérale de LausanneGoogle Scholar
  38. Pennington DW, Margni M, Payet J, Jolliet O (2006) Risk and regulatory hazard-based toxicological effect indicators in life-cycle assessment (LCA). Hum Ecol Risk Assess 12:450–475CrossRefGoogle Scholar
  39. Pennington DW, Payet J, Hauschild M (2004) Aquatic ecotoxicological indicators in life-cycle assessment. Environ Toxicol Chem 23:1796–1807CrossRefGoogle Scholar
  40. Pizzol M, Christensen P, Schmidt J, Thomsen M (2011) Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: a comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J Clean Prod 19:687–698CrossRefGoogle Scholar
  41. Plouffe G, Bulle C, Deschênes L (2015) Assessing the variability of the bioavailable fraction of zinc at the global scale using geochemical modeling and soil archetypes. Int J Life Cycle Assess 20:527–540CrossRefGoogle Scholar
  42. Rosenbaum RK et al (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546CrossRefGoogle Scholar
  43. Sauvé S (2002) Speciation of metals in soils. In: Allen HE (ed) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates. Microbes and Plants. Metals and the Environment. SETAC, Pensacola, USA, pp 7–37Google Scholar
  44. Thakali S (2006) Terrestrial biotic ligand model (TBLM) for copper, and nickel toxicities to plants, invertebrates, and microbes in soils. University of DelawareGoogle Scholar
  45. Thakali S, Allen HE, DM D t, Ponizovsky AA, Rooney CP, Zhao F-J, McGrath SP (2006a) A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ Sci Technol 40:7085–7093CrossRefGoogle Scholar
  46. Thakali S et al (2006b) Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ Sci Technol 40:7094–7100CrossRefGoogle Scholar
  47. USEtoxTEAM (2004) Extrapolated EC50 data and QSARs in calculation of new CFs and interpretation of trophic levels. USEtox. Accessed 2014-09-19
  48. Wang X, Li B, Ma Y, Hua L (2010) Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Ecotox Environ Safe 73:1272–1278CrossRefGoogle Scholar
  49. Wu F, Mu Y, Chang H, Zhao X, Giesy J, Wu KB (2013) Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Environ Sci Techol 47:446–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Geneviève Plouffe
    • 1
  • Cécile Bulle
    • 2
  • Louise Deschênes
    • 2
  1. 1.Polytechnique Montréal, CIRAIGMontrealCanada
  2. 2.CIRAIG, ESG UQÀM - MontrealMontrealCanada

Personalised recommendations