Advertisement

Paths to a sustainable food sector: integrated design and LCA of future food supply chains: the case of pork production in Sweden

  • Ulf Gunnar SonessonEmail author
  • Katarina Lorentzon
  • Annica Andersson
  • Ulla-Karin Barr
  • Jan Bertilsson
  • Elisabeth Borch
  • Carl Brunius
  • Margareta Emanuelsson
  • Leif Göransson
  • Stefan Gunnarsson
  • Lars Hamberg
  • Anna Hessle
  • Karl-Ivar Kumm
  • Åse Lundh
  • Tim Nielsen
  • Karin Östergren
  • Eva Salomon
  • Erik Sindhöj
  • Bo Stenberg
  • Maria Stenberg
  • Martin Sundberg
  • Helena Wall
LCA OF NUTRITION AND FOOD CONSUMPTION

Abstract

Purpose

To describe a more sustainable food sector, a supply chain approach is needed. Changing a supply chain inevitably means that various attributes of the product and its system will change. This project assumed this challenge and delivered detailed descriptions, life cycle assessment (LCA) evaluations, and consequence assessments of the supply chains of six commodities, i.e., milk, cheese, beef, pork, chicken, and bread, from a Swedish region. This paper presents results for the pork supply chain.

Methods

In the project setup, experts on production along supply chains designed three scenarios for environmentally improved systems. These scenarios, i.e., the ecosystem, plant nutrients, and climate scenarios, were intended to address different clusters of environmental goals. The next step was to challenge these scenarios by considering their possible consequences for products and systems from the food safety, sensory quality, animal welfare, consumer appreciation, and (for primary production only) cost perspectives. This led to changes in production system design to prevent negative consequences. The final supply chains were quantified using LCA and were again assessed from the three perspectives.

Results and discussion

The scenario design approach worked well, thoroughly and credibly describing the production systems. Assessment of consequences bolstered the credibility and quality of the systems and results. The LCA of pig production and smoked ham identified large potentials for improvement by implementing available knowledge: global warming potential (GWP) could be reduced 21–54 % and marine eutrophication by 14–45 %. The main reason for these improvements was improved productivity (approaching the best producers’ current performance), though dedicated measures were also important, resulting in increased nitrogen efficiency, more varied crop rotations for crop production and better production management, and improved animal health and manure management for animal production. Reduced post-farm wastage contributed as did reduced emissions from fertilizer production.

Conclusions

The working approach applied was successful in integrating LCA research with food system production expertise to deliver results relevant to supply chain decision-makers. The consequence assessments brought considerable value to the project, giving its results greater credibility. By introducing constraints in the form of “no negative consequences and no increased costs,” the work was “guided” so that the scenario design avoided being hampered by too many opportunities.

Keywords

Consequence assessment Environment Food system scenarios Future food production LCA Sustainable food chains 

Notes

Acknowledgments

This project was part of TvärLivs, a multidisciplinary research program for food funded by Vinnova (the Swedish Innovation Agency), the Federation of Swedish Farmers (LRF), the Swedish Food Federation, the Swedish Retail Federation, and Västra Götaland Region. We also acknowledge the anonymous reviewers’ comments, which contributed to the final text.

References

  1. Audsley E, Brander M, Chatterton J, Murphy-Bokern D, Webster C, Williams A (2009) How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope to reduce them by 2050. Report. WWF-UK, SurreyGoogle Scholar
  2. Basset-Mens C, van der Werf HMG (2005) Scenario-based environmental assessment of farming systems: the case of pig production in France. Agric Ecosyst Environ 105(1–2):127–144CrossRefGoogle Scholar
  3. Basset-Mens C, van der Werf HMG, Robin P, Morvan T, Hassouna M, Paillat JM, Vertes F (2007) Methods and data for the environmental inventory of contrasting pig production systems. J Clean Prod 15(15):1395–1405CrossRefGoogle Scholar
  4. Bellon-Maurel V, Peters GM, Clermidy S, Frizarin G, Sinfort C, Ojeda H, Roux P, Short MD (2015) Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies—part II: application to viticulture. J Clean Prod 87:119–129CrossRefGoogle Scholar
  5. Bunn DW, Salo AA (1993) Forecasting with scenarios. Eur J Oper Res 68(3):291–303CrossRefGoogle Scholar
  6. European Commission (2002) Regulation (EC) No 1774/2002 of the European Parliament and of the Council of 3 October 2002, http://eur-lex.europa.eu/legal-ontent/EN/TXT/?qid=1398161699655&uri=CELEX:32002R1774. Accessed Nov 2014
  7. European Commission (2011) Joint Research Centre–Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) handbook: recommendations for life cycle impact assessment in the European context, 1st ed. EUR 24571 EN. Publications Office of the European Union, LuxemburgGoogle Scholar
  8. Frischknecht R, Jungbluth N (eds) (2003) Implementation of life cycle impact assessment methods. Final report ecoinvent 2000. Swiss Centre for LCI, Duebendorf, SwitzerlandGoogle Scholar
  9. Garcia-Launay F, van der Werf HMG, Nguyen TTH, Le Tutour L, Dourmad JY (2014) Evaluation of the environmental implications of the incorporation of feed-use amino acids in pig production using life cycle assessment. Livest Sci 161:158–175CrossRefGoogle Scholar
  10. Goedkoop M, Heijungs R, Huijbregts M, de Schrywer A, Struijs J, van Zelm R (2009) ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and endpoint level; Report 1: characterisation. http://www.lcia-recipe.net
  11. Göransson L, Barr UK, Borch E, Brunius C, Florén B, Gunnarsson S, Hamberg L, Lindbom I, Lorentzon K, Nielsen T, Normann A, Salomon E, Sindhöj E, Sonesson U, Sundberg M, Åström A, Östergren K (2014) Hållbara matvägar – referens- och lösningsscenarier för grisproduktion och framställning av rökt skinka [Paths to a sustainable food sector: solution scenarios for pig production and production of smoked, sliced ham]. SIK-Report 887. SIK – The Swedish Institute for Food and Biotechnology, GöteborgGoogle Scholar
  12. Halberg N, Hermansen JE, Sillebak Kristensen I, Eriksen J, Tvedegaard N, Molt Petersen B (2010) Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution. Agron Sustain Dev 30(4):721–731CrossRefGoogle Scholar
  13. Lindbom I, Esbjörnsson C, Forsman J, Gustavsson J, Sundström B (2013) Åtgärder för minskat svinn i livsmedelsindustrin – ett industri och kedjeperspektiv [Measures for reduced losses in the food industry: an industry and supply chain perspective]. Report no. 6595. Swedish Environmental Protection Agency, StockholmGoogle Scholar
  14. Meyer R (2007) Comparison of scenarios on futures of European food chains. Trends Foods Sci Technol 18(110):540–545CrossRefGoogle Scholar
  15. Millet SM (1988) How scenarios trigger strategic thinking. Long Range Plan 21(5):61–68CrossRefGoogle Scholar
  16. PRé Consultants (2007) SimaPro 7. PRé Consultants B.V, AmersfoortGoogle Scholar
  17. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber H, Nykvist B, De Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker BH, Liverman D, Richardson K, Crutzen C, Foley J (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  18. Rowe G, Wright G, Bolger F (1991) Delphi—a reevaluation of research and theory. Technol Forecast Soc 39(3):235–251CrossRefGoogle Scholar
  19. Schnaars SP (1987) How to develop and use scenarios. Long Range Plann 20(1):105–114CrossRefGoogle Scholar
  20. SEPA (2013) Sweden’s environmental quality objectives. Swedish Environmental Protection Agency, Stockholm. http://www.miljomal.se/sv/Environmental-Objectives-Portal/Undre-meny/About-the-Environmental-Objectives. Accessed Feb 2012
  21. Sonesson U, Lorentzon K, Florén B, Krewer C, Nilsson K, Kumm KI, Woodhouse A (2014) Hållbara matvägar – resultat och analys [Paths to a sustainable food sector: results and analysis]. SIK-Report 891. SIK – The Swedish Institute for Food and Biotechnology, GöteborgGoogle Scholar
  22. Stenberg B, Sonesson U, Stenberg M (2014) Hållbara matvägar – utgångs- och lösningsscenarier för växtodling [Paths to a sustainable food sector: solution scenarios for crop production]. SIK-Report 890. SIK – The Swedish Institute for Food and Biotechnology, GöteborgGoogle Scholar
  23. Stern S, Sonesson U, Gunnarsson S, Öborn I, Kumm K-I, Nybrant T (2005) Sustainable development of food production: a case study on scenarios for pig production. Ambio 34(4–5):402–407CrossRefGoogle Scholar
  24. Strid Eriksson I, Elmquist H, Stern S, Nybrant T (2005) Environmental systems analysis of pig production: the impact of feed choice. Int J Life Cycle Assess 10(2):143–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ulf Gunnar Sonesson
    • 1
    Email author
  • Katarina Lorentzon
    • 1
  • Annica Andersson
    • 2
  • Ulla-Karin Barr
    • 1
  • Jan Bertilsson
    • 3
  • Elisabeth Borch
    • 1
  • Carl Brunius
    • 2
  • Margareta Emanuelsson
    • 3
  • Leif Göransson
    • 3
  • Stefan Gunnarsson
    • 4
  • Lars Hamberg
    • 1
  • Anna Hessle
    • 4
  • Karl-Ivar Kumm
    • 4
  • Åse Lundh
    • 2
  • Tim Nielsen
    • 1
  • Karin Östergren
    • 1
  • Eva Salomon
    • 6
  • Erik Sindhöj
    • 6
  • Bo Stenberg
    • 5
  • Maria Stenberg
    • 5
  • Martin Sundberg
    • 6
  • Helena Wall
    • 3
  1. 1.Department of Food and BioscienceTechnical Research Institute of Sweden (SP)GöteborgSweden
  2. 2.Department of Food ScienceThe Swedish University of Agricultural Sciences (SLU)UppsalaSweden
  3. 3.Department of Animal Nutrition and ManagementThe Swedish University of Agricultural Sciences (SLU)UppsalaSweden
  4. 4.Department of Animal Environment and HealthThe Swedish University of Agricultural Sciences (SLU)SkaraSweden
  5. 5.Department of Soil and EnvironmentThe Swedish University of Agricultural Sciences (SLU)SkaraSweden
  6. 6.Swedish Institute of Agricultural and Environmental Engineering (JTI)UppsalaSweden

Personalised recommendations