Abiotic resource depletion in LCA—background and update of the anthropogenic stock extended abiotic depletion potential (AADP) model

  • Laura Schneider
  • Markus Berger
  • Matthias Finkbeiner
LIFE CYCLE SUSTAINABILITY ASSESSMENT

Abstract

Purpose

The depletion of abiotic resources needs to be discussed in the light of available geologic stocks. For the evaluation of long-term resource availability under consideration of the resources’ functional relevance, the abiotic resource stock that is ultimately available for human purposes needs to be identified. This paper discusses the determination of geologic resources stocks and outlines an approach for the estimation of the resource stocks ultimately available for human use in the long-term. Based on these numbers, existing characterization factors for the assessment of resource depletion by means of the anthropogenic stock extended abiotic depletion potential (AADP) model can be updated.

Methods

For the assessment of long-term resource availability, the share of abiotic resources ultimately available for human extraction needs to be inferred from the quantity of the elements available in the earth’s crust. Based on existing data on crustal concentrations and assumptions regarding the maximal extractable amount of resource, three different approaches for the determination of ultimately extractable reserves are proposed. The different resource numbers are compared, and their effects on the resulting characterization factors derived from the abiotic depletion potential (ADP) and the AADP models are analyzed.

Results and discussion

A best estimate for the determination of ultimately extractable reserves is proposed. Based on this new resource number, AADP characterization factors for 35 materials are calculated. The use of ultimately extractable reserves leads to an improved applicability of the AADP model and increases the overall significance of the results.

Conclusions

Resource security is a premise for sustainable development. The use of resources needs to be evaluated in the context of their decreasing availability for future generations. Thus, resource choices should also be based on an analysis of available resource stocks. The proposed AADP characterization factors based on ultimately extractable reserves will enable a more realistic evaluation of long-term resource availability for human purposes.

Keywords

Abiotic depletion potential AADP LCA Long-term resource availability Resource scarcity 

References

  1. Alonso E, Gregory J, Field F, Kirchain R (2007) Material availability and the supply chain: risks, effects, and responses. Environ Sci Technol 41(19):6649–6656CrossRefGoogle Scholar
  2. Artemieva IM (2009) Continental crust. In: Lastovick J (ed) Geophysics and geochemistry—Volume 2. Encyclopedia of Life Support Systems (EOLSS), UppsalaGoogle Scholar
  3. Bentley RW (2002) Global oil & gas depletion: an overview. Energ Policy 30(3):189–205CrossRefGoogle Scholar
  4. Bösch ME, Hellweg S, Huijbregts M, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12(3):181–190CrossRefGoogle Scholar
  5. BUWAL (1998) Bewertung in Ökobilanzen mit der Methode der ökologischen Knappheit - Ökofaktoren 1997. Schriftenreihe Umwelt, Nr. 297 - Ökobilanzen. Federal office for environment forest and landscape, BernGoogle Scholar
  6. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788CrossRefGoogle Scholar
  7. CML (2013) CML - IA 4.2 edn. Institut of Environmental Sciences Leiden University, LeidenGoogle Scholar
  8. Crowson PCF (2011) Mineral reserves and future minerals availability. Miner Econ 24(1):1–6CrossRefGoogle Scholar
  9. Dewulf J, Bösch ME, de Meester B, van der Vorst G, van Langenhove H, Hellweg S, Huijbregts MAJ (2007) Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environ Sci Technol 41(24):8477–8483CrossRefGoogle Scholar
  10. Dong Y, Laurent A, Hauschild MZ (2013) Recommended assessment framework, characterisation models and factors for environmental impacts and resource use. Report prepared within the Seventh Framework Project of the European Union—Development and application of a standardized methodology for the prospective sustainability assessment of technologiesGoogle Scholar
  11. Drielsma J (2014) Managing abiotic resources—how mine investment and production works. 55th LCA Discussion Forum: Abiotic resources: New impact assessment approaches in view of resource efficiency and resource criticality, April 11th, ZürichGoogle Scholar
  12. Erdmann L, Behrendt S (2010) Kritische Rohstoffe für Deutschland. Institut für Zukunftsstudien und Technologiebewertung (IZT), BerlinGoogle Scholar
  13. Erickson RL (1973) Crustal abundance of elements, and mineral reserves and resources. U.S. Geological Survey Professional Paper 820, pp 21–25Google Scholar
  14. European Commission (2010) International Reference Life Cycle Data System (ILCD) Handbook—Framework and Requirements for Life Cycle Impact Assessment Models and Indicators. EUR 24709 EN. LuxembourgGoogle Scholar
  15. European Commission (2011a) International Reference Life Cycle Data System (ILCD) Handbook—recommendations for life cycle impact assessment in the European context. Publications Office of the European Union, LuxemburgGoogle Scholar
  16. European Commission (2011) Roadmap to a resource efficient Europe. COM (2011) 571 final. BrusselsGoogle Scholar
  17. European Commission (2013) Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisationsGoogle Scholar
  18. Finnveden G, Östlund P (1997) Exergies of natural resources in life cycle assessment and other applications. Energy 22(9):923–931CrossRefGoogle Scholar
  19. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21CrossRefGoogle Scholar
  20. Frischknecht R, Büsser-Knöpfel S (2013) Swiss Eco-Factors 2013 according to the Ecological Scarcity Method. Methodological fundamentals and their application in Switzerland. Environmental studies no. 1330. Federal Office for the Environment, BernGoogle Scholar
  21. Goedkoop M, Spriensma R (2000) The eco-indicator 99—a damage oriented method for life cycle impact assessment. vol 2. PRé Consultants B.V., AmersfoortGoogle Scholar
  22. Goedkoop M, Heijungs R, Huijbregts M, Schryver AD, Struijs J, Zelm Rv (2008) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Pré Consultants, CML, RUN, RIVM, AmersfoortGoogle Scholar
  23. Gordon RB, Bertram M, Gradel TE (2007) On the sustainability of metal supplies: a response to Tilton and Lagos. Resour Policy 32(1–2):24–28CrossRefGoogle Scholar
  24. Graedel TE, Erdmann L (2012) Will material scarcity impede routine industrial use? MRS Bull 37(4):325–331CrossRefGoogle Scholar
  25. Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christofferson L, Friedlander E, Henly C, Jun C, Nassar NT, Schechner D, Warrne S, M-y Y, Zhu C (2012) Methodology of metal criticality determination. Environ Sci Technol 4(2):1063–1070CrossRefGoogle Scholar
  26. Graedel TE, Gunn G, Tercero Espinoza L (2014) Metal resources, use and criticality. In: Gunn G (ed) Critical metals handbook. Wiley, West Sussex, pp 1–19Google Scholar
  27. Greenwood N, Earnshaw A (1984) Appendix 4: abundance of elements in crustal rock. In: Chemistry of the elements. Pergamon Press, Oxford, UKGoogle Scholar
  28. Guinée JB (1995) Development of a methodology for the environmental life-cycle assessment of products. Leiden University, LeidenGoogle Scholar
  29. Guinée J, Heijungs R (1995) A proposal for the definition of resource equivalency factors for use in product LCA. Environ Toxicol Chem 14(5):917–925CrossRefGoogle Scholar
  30. Guinée JB, Bruijn H, van Duin R, Gorree M, Heijungs R, Huijbregts M, Huppes G, Kleihn R, de Koning A, van Oers L, Sleeswijk A, Suh S, Udo de Haes HA (eds) (2002) Handbook on life cycle assessment—an operational guide to the ISO standards. Kluwer Academic Publishers, DordrechtGoogle Scholar
  31. Hagelüken C, Meskers CEM (2010) Complex life cycles of precious and special metals. In: Graedel TE, Evd V (eds) Linkages of sustainability. MIT Press, Cambridge, pp 163–197Google Scholar
  32. Hammarstrom JM, Zientek ML, Berger BR, Bookstrom AA, Ludington S, Mihalasky MJ, Robinson GR, Zurcher L (2013) Undiscovered porphyry copper resources—a global assessment. Paper presented at The Geological Society of America Annual Meeting and Exposition, Denver, Colorado, October 27–30Google Scholar
  33. Hauschild M, Wenzel H (1998) Environmental assessment of products, volume 2—scientific backgrounds. Chapman & Hall, New YorkGoogle Scholar
  34. Hauschild M, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, de Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modelling in life cycle impact assessment. Int J Life Cycle Assess 18(3):683–697CrossRefGoogle Scholar
  35. Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resources and land use. CML Report 138. Leiden University, Centre of Environmental Science (CML), LeidenGoogle Scholar
  36. IntierraRMG (2013) Raw materials data. StockholmGoogle Scholar
  37. Kesler SE (2007) Mineral supply and demand into the 21st century. U. S Geological Survey, RestonGoogle Scholar
  38. Kesler SE, Wilkinson BH (2008) Earth’s copper resources estimated from tectonic diffusion of porphyry copper deposits. Geologija 36:255–258CrossRefGoogle Scholar
  39. Kesler S, Wilkinson B (2009) Resources of gold in Phanerozoic epithermal deposits. Econ Geol 104:623–633CrossRefGoogle Scholar
  40. Kleijn R (2012) Materials and energy: a story of linkages. Leiden University, LeidenGoogle Scholar
  41. Klinglmair M, Sala S, Brandao M (2013) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19(3):580–592CrossRefGoogle Scholar
  42. Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68(10):2696–2705CrossRefGoogle Scholar
  43. Lindeijer EW, Müller-Wenk R, Steen B et al (2002) Impact assessment of resources and land use. In: de Haes HA U, Finnveden G, Goedkoop M (eds) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 11–64Google Scholar
  44. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2Google Scholar
  45. National Research Council (2008) Minerals, critical minerals, and the U.S. economy. National Academies Press, WashingtonGoogle Scholar
  46. PE International (2013) GaBi 6 Software-system and database for life cycle engineering. Stuttgart, EchterdingenGoogle Scholar
  47. Petrie J (2007) New models of sustainability for the resources sector—a focus on minerals and metals. Trans IChemE, B Process Saf Environ Prot 85(B1):88–98CrossRefGoogle Scholar
  48. Prior T, Giurco D, Mudd G, Mason L, Behrisch J (2012) Resource depletion, peak minerals and the implications for sustainable resource management. Global Environ Chang 22(3):577–587CrossRefGoogle Scholar
  49. Radetzki M (2002) Is resource depletion a threat to human progress? Oil and other critical exhaustible materials. Paper presented at the energex’2002, CracowGoogle Scholar
  50. Rankin WJ (2011) Minerals, metals and sustainability: meeting future material needs. CSIRO Publishing, CollingwoodGoogle Scholar
  51. Reuter MA, Heiskanen K, Boin U, Schaik A, Verhoef E, Yang Y, Georgalli G (2005) The metrics of material and metal ecology. Developments in mineral processing 16. Elsevier, AmsterdamGoogle Scholar
  52. Rollinson H (2005) Crustal generation in the Archean. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, CambridgeGoogle Scholar
  53. Rudnick RL, Gao S (2004) Composition of the continental crust. In: Rudnick RL (ed) The crust. Elsevier, Ltd, OxfordGoogle Scholar
  54. Rudnick RL, Gao S (2005) Composition of the continental crust. In: Rudnick RL (ed) The crust. Elsevier Ltd., Oxford, pp 1–64Google Scholar
  55. Schneider L (2014) A comprehensive approach to model abiotic resource provision capability in the context of sustainable development. unpublished PhD diss., Technische Universität Berlin, BerlinGoogle Scholar
  56. Schneider L, Berger M, Finkbeiner M (2011) The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16(9):929–936CrossRefGoogle Scholar
  57. Schneider L, Berger M, Schüler-Hainsch E, Knöfel S, Ruhland K, Mosig J, Bach V, Finkbeiner M (2013) The economic resource scarcity potential (ESP) for evaluating resource use based on life cycle assessment. Int J Life Cycle Assess 19(3):601–610CrossRefGoogle Scholar
  58. Simon JL (1980) Resources, population, environment: an oversupply of false bad news. Science 208(4451):1431–1437CrossRefGoogle Scholar
  59. Simon J (1998) The ultimate resource 2. Princeton University Press, PrincetonGoogle Scholar
  60. Skinner BJ (1976) A second iron age ahead? Am Sci 64(3):158–169Google Scholar
  61. Skinner BJ (1979) Earth resources. Proc Natl Acad Sci 76(9):4121–4217CrossRefGoogle Scholar
  62. Steen BA (2006) Abiotic resource depletion—different perceptions of the problem with mineral deposits. Int J Life Cycle Assess 11(1):49–54CrossRefGoogle Scholar
  63. Steen B, Borg G (2002) An estimation of the cost of sustainable production of metal concentrates from the Earth’s crust. Ecol Econ 42(3):401–413CrossRefGoogle Scholar
  64. Steinberger JK, Krausmann F, Eisenmenger N (2010) Global patterns of materials use: a socioeconomic and geophysical analysis. Ecol Econ 69(5):1148–1158CrossRefGoogle Scholar
  65. Stewart M, Weidema B (2005) A consistent framework for assessing the impacts from resource use, a focus on resource functionality. Int J Life Cycle Assess 10(4):240–247CrossRefGoogle Scholar
  66. Tilton JE (1996) Exhaustible resources and sustainable development—two different paradigms. Resour Policy 22(1/2):91–97CrossRefGoogle Scholar
  67. Tilton JE (2003) On borrowed time? Assessing the threat of mineral depletion. Resources for the Future, Washington, DCGoogle Scholar
  68. Tilton JE, Lagos G (2007) Assessing the long-run availability of copper. Resour Policy 32(1–2):19–23CrossRefGoogle Scholar
  69. UNEP (2011) Estimating long-run geological stocks of metals. Working Paper, April 6, 2011. UNEP International Panel on Sustainable Resource Management, Working Group on Geological Stocks of Metals, ParisGoogle Scholar
  70. USGS (2013) Mineral commodity summaries. U.S. Geological Survey, Department of the Interior, RestonGoogle Scholar
  71. USGS (2014a) Mineral commodity summaries. U.S. Geological Survey, Department of the Interior, RestonGoogle Scholar
  72. USGS (2014b) Mineral commodity summaries 2014—Appendix C. U.S. Geological Survey, U.S. Department of the Interior, WashingtonGoogle Scholar
  73. van Oers L, deKoning A, Guinée J, Huppes G (2002) Abiotic resource depletion in LCA. Road and Hydraulic Engineering Institute, LeidenGoogle Scholar
  74. Yanagi T (2011) Arc volcano of Japan. Lecture notes in earth sciences 136. Springer, VerlagGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Laura Schneider
    • 1
  • Markus Berger
    • 1
  • Matthias Finkbeiner
    • 1
  1. 1.Department of Environmental Technology, Chair of Sustainable EngineeringTechnische Universität BerlinBerlinGermany

Personalised recommendations