20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production

  • Daniel Klein
  • Christian Wolf
  • Christoph Schulz
  • Gabriele Weber-Blaschke



Life cycle assessment (LCA) techniques have been developed since the late 1960s in order to analyze environmental impacts of various products or companies. Although LCA techniques of forest production have been already conducted since the early 1990s, consistent and comprehensive LCA studies are still lacking for the forestry sector. In order to support better comparability between LCA studies, we analyzed the problems and differences by conducting a descriptive and quantitative analysis of existing LCA studies of forest production with special focus on Global Warming Potential (GWP).


We analyzed 22 different peer-reviewed studies, four original reports and two databases. Important issues were, among others, the goal of the studies, system boundaries, functional units, impact categories and involved processes. In addition, a quantitative analysis was purchased where the results of the GWP of the reviewed studies were analyzed.

Results and discussion

The studies showed large differences between methodical assumptions and their subsequent results. For the GWP, we found a range of 2.4–59.6 kg CO2-equiv.*m−3 over bark (ob; median = 11.8; n = 41) from site preparation to forest road and 6.3–67.1 kg CO2-equiv.*m−3 ob (median = 17.0; n = 36) from site preparation to plant gate or consumer. Results varied as a function of the included processes and decisive assumptions, e.g., regarding productivity rates or fuel consumption of machineries. Raw wood products are widely declared as “carbon neutral,” but the above-mentioned results show that absolute carbon neutrality is incorrect, although the GWP is low compared with the carbon storage of the raw wood product (range of C-emitted/C-stored in wood is 0.008–0.09 from forest to plant gate or consumer). Thereby, raw wood products can be described as “low emission raw materials” if long-term in situ carbon losses by changed forest management or negative direct or indirect land use change effects (LUC, iLUC) can be excluded.


In order to realize improved comparisons between LCA studies in the forestry sector in the future, we propose some methodical approaches regarding the harmonization of system boundaries, functional units, considered processes, and allocation assumptions. These proposals could help to specify the description of the forest production outlined in existing Product Category Rules for Environmental Product Declarations (e.g., EN ISO 16485 2014 or EN ISO 15804 2012) following EN ISO 14025 (2011) and for carbon footprinting standards like the Publicly Available Specification (PAS) 2050 (2011) or the European Environmental Footprinting Initiative.


Descriptive/quantitative analysis Forest production GWP LCA Literature review 



This study was part of the project “Experts Group Resource Management Bioenergy in Bavaria” (“ExpRessBio-Expertengruppe Bioenergie Bayern”) and founded by the Bavarian State Ministry of Food, Agriculture and Forestry.


  1. AEBIOM (2012) European Biomass Association. Annual report. Brussels, p 32Google Scholar
  2. Alam A, Kilpeläinen A, Kellomäki S (2012) Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems. Eur J For Res 131:655–667CrossRefGoogle Scholar
  3. Albrecht S, Rüter S, Welling J, Knauf M, Mantau U, Braune A, Baitz M, Weimar H, Sörgel S, Kreissig J, Deimling J, Hellwig S (2008) Ökologische Potentiale durch Holznutzung gezielt fördern. Arbeitsbericht aus dem Institut für Holztechnologie und Holzbiologie. Johann Heinrich von Thünen Institut, p 295Google Scholar
  4. Biograce II (2013) Accessed December 2013
  5. Berg S, Lindholm EL (2005) Energy use and environmental impacts of forest operations in Sweden. J Cleaner Prod 13:33–42CrossRefGoogle Scholar
  6. Cambria D, Pierangeli D (2012) Application of a life cycle assessment to walnut tree (Juglans regia L.) high quality wood production: a case study in southern Italy. J Cleaner Prod 23:37–46CrossRefGoogle Scholar
  7. Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451CrossRefGoogle Scholar
  8. Cranston GR, Hammond GP (2012) Carbon footprints in a bipolar, climate-constrained world. Ecol Indic 16:91–99CrossRefGoogle Scholar
  9. Dias AC, Arroja L (2012) Environmental impacts of eucalypt and maritime pine wood production in Portugal. J Cleaner Prod 37:368–376CrossRefGoogle Scholar
  10. Djomo SN, Kasimoui O, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. Bioenergy 3:181–197Google Scholar
  11. Engel AM, Wegener J, Lange M (2012) Greenhouse gas emissions of two mechanized wood harvesting methods in comparison with the use of draft horses for logging. Eur J For Res 131:1139–1149CrossRefGoogle Scholar
  12. England JR, May B, Raison RJ, Paul KI (2013) Cradle-to-gate inventory of wood production from Australian softwood plantations and native hardwood forests: carbon sequestration and greenhouse gas emissions. For Ecol Manag 302:295–307CrossRefGoogle Scholar
  13. EN ISO 14025 (2011) Environmental labels and declarations—type III declarations—principles and procedures, p 50Google Scholar
  14. EN ISO 14040 (2009) Environmental management—life cycle assessment—principles and framework, p 40Google Scholar
  15. EN ISO 14044 (2006) Environmental management—life cycle assessment—requirements and guidelines, p 84Google Scholar
  16. EN ISO 15804 (2012) Sustainability of construction works—environmental product declarations—core roles for the product category of construction products, p 50Google Scholar
  17. EN ISO 16485 (2014) Round and sawn timber—environmental product declarations—product category rules for wood and wood-based products for use in construction, p 27Google Scholar
  18. Eshun JF, Potting J, Leemans R (2010) Inventory analysis of the timber industry in Ghana. Int J Life Cycle Assess 15:715–725CrossRefGoogle Scholar
  19. Frühwald A, Wegener G (1993) Energiekreislauf Holz- ein Vorbild für die Zukunft. HOLZ- Erzeugung und Verwendung-Ein Kreislauf der Natur. 15. Dreiländer-Holztagung in Garmisch-Partenkirchen, pp 49-60Google Scholar
  20. Frühwald A, Scharai-Rad M, Hasch J, Wegener G, Zimmer B (1997) Erstellung von Ökobilanzen für die Forst-und Holzwirtschaft. Informationsdienst Holz, ISSN 0466-2114, p 27Google Scholar
  21. Gaboury S, Boucher JF, Villeneuve C, Lord D, Gagnon R (2009) Estimating the net carbon balance of boreal open woodland afforestation: a case-study in Quebec’s closed-crown boreal forest. For Ecol Manag 257:483–494CrossRefGoogle Scholar
  22. González-García S, Berg S, Feijoo G, Moreira MT (2009) Environmental impacts of forest production and supply of pulpwood: Spanish and Swedish case studies. Int J Life Cycle Assess 14:340–353CrossRefGoogle Scholar
  23. González-García S, Krowas I, Becker G, Feijoo G, Moreira MT (2013a) Cradle-to-gate life cycle inventory and environmental performance of a Douglas-fir roundwood production in Germany. J Cleaner Prod 54:244–252CrossRefGoogle Scholar
  24. González-García S, Bonnesoeur V, Pizzi A, Feijoo G, Moreira MT (2013b) The influence of forest management systems on the environmental impacts for Douglas-fir production in France. Sci Total Environ 461:681–692CrossRefGoogle Scholar
  25. Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future, environmental science and technology. Environ Sci Technol 45:90–96CrossRefGoogle Scholar
  26. Heinimann HR (2012) Life cycle assessment (LCA) in forestry—state and perspectives. Croat J For Eng 33:357–372Google Scholar
  27. Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2013) Approaches for inclusion of forest carbon cycle in life cycle assessment—a review. BCB Bioenergy 5:475–486Google Scholar
  28. IPCC (1999) Aviation and the global atmosphere. IPCC special report. Summary for policy makers, p 23Google Scholar
  29. IPCC (2006) Guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land use. Intergovernmental Panel of Climate Change, JapanGoogle Scholar
  30. ISO/TS 14067 (2013) Carbon footprint of products—requirements and guidelines for quantification and communication, p 52Google Scholar
  31. Jensen AA, Hoffman L, Møller B, Schmidt A (1997) Life cycle assessment. A guide to approaches, experiences and information sources. Environmental Issues Series 6, European Environmental Agency, p 119Google Scholar
  32. Johnson L, Lippke B, Oneil E (2012) Modeling biomass collection and woods processing life-cycle analysis. For Prod J 62:258–272Google Scholar
  33. JRC (2010) Joint research centre of the European Commission. General guide for life cycle assessment—detailed guidance. ILCD Handbook, p 394Google Scholar
  34. JRC (2011) Joint research centre of the European Commission. Recommendations for life cycle impact assessments in the European context-based on existing environmental impact assessment models and factors. ILCD Handbook, p 143Google Scholar
  35. Karjalainen T, Asikainen A (1996) Greenhouse gas emissions from the use of primary energy in forest operations and long-distance transportation of timber in Finland. Forestry 69:215–228CrossRefGoogle Scholar
  36. Kilpeläinen A, Alam A, Strandman H, Kellomäki S (2011) Life cycle assessment tool for estimating net CO2 exchange of forest production. GCB Bioenergy 3:461–471CrossRefGoogle Scholar
  37. Kinjo M, Ohuchi T, Kii H, Murase Y (2005) Studies on life cycle assessment of sugi lumber. J Fac Agr 50:343–351Google Scholar
  38. Klein D, Höllerl S, Blaschke M, Schulz C (2013) The contribution of managed and unmanaged forests to climate change mitigation—a model approach at stand level for the main tree species in Bavaria. Forests 4:43–69CrossRefGoogle Scholar
  39. Laborde D (2011) Assessing the land use change consequences of European biofuel policies. International Food Policy Institute, Washington DC, p 111, Final ReportGoogle Scholar
  40. Lindholm EL, Hansson PA (2010) Energy efficiency and the environmental impact of harvesting stumps and logging residues. Eur J For Res 129:1223–1235CrossRefGoogle Scholar
  41. Lopes Silva DA, Rocco Lahr FA, Garcia RP, Seixas Freire FMC, Ometto AR (2013) Life cycle assessment of medium density particleboard (MDP) produced in Brazil. Int J Life Cycle Assess 18:1404–1411CrossRefGoogle Scholar
  42. Michelsen O, Solli C, Strømman AH (2008) Environmental impact and added value in forestry operations in Norway. J Ind Ecol 12:69–81CrossRefGoogle Scholar
  43. Miner R and Gaudreault C (2013) A review of biomass carbon accounting methods and implications. National Council for Air and Stream, improvement, technical bulletin 1015, p 33Google Scholar
  44. Neupane B, Halog A, Dhungel S (2011) Attributional life cycle assessment of woodchips for bioethanol production. J Cleaner Prod 19:733–741CrossRefGoogle Scholar
  45. Newell JP, Vos RO (2012) Accounting for forest carbon pool dynamics in product carbon footprints. Challenges and opportunities. Environ Impact Assess Rev 37:23–36CrossRefGoogle Scholar
  46. Oneil E, Johnson L, Lippke B, McCarter JB, McDill ME, Roth PA (2010) Life-cycle impacts of inland Northwest and Northeast/North central forest resources. Wood Fiber Sci 42:29–41Google Scholar
  47. Petersen AK, Solberg B (2005) Environmental and economic impacts of substitution between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden. Forest Policy Econ 7:249–259Google Scholar
  48. Publicly Available Specification (PAS) 2050 (2011) Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. London, United Kingdom, p 38Google Scholar
  49. Pyörälä P, Kellomäki S, Peltola H (2012) Effects of management on biomass production in Norway spruce stands and carbon balance of bioenergy use. For Ecol Manag 275:87–97CrossRefGoogle Scholar
  50. Randers J (2012) 2052: A global forecast for the next 40 years. A report to the Club of Rome, Commemorating the 40th anniversary of The Limits to growth. Vermont, USA, 392 pGoogle Scholar
  51. Richter K, Gugerli H (1996) Holz und Holzprodukte in vergleichenden Ökobilanzen. Holz Roh Werkst 54:225–231CrossRefGoogle Scholar
  52. Richter K, Sell J (1992) Ökobilanzen von Baustoffen und Bauprodukten aus Holz. Zusammenfassung erster Ergebnisse. Forschungs-und Arbeitsberichte Abteilung 115, Holz. Bericht Nr. 115/24. EMPA, Dübendorf, Switzerland, p 33Google Scholar
  53. Routa J, Kellomäki S, Kilpeläinen A, Peltola H, Strandman H (2011) Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. GCB Bioenergy 3:483–497CrossRefGoogle Scholar
  54. Saud P, Wang J, Lin W, Sharma BD, Hartley DS (2013) A life cycle analysis of forest carbon balance and carbon emissions of timber harvesting in West Virginia. Wood Fiber Sci 45:1–18Google Scholar
  55. Schulze ED, Körner C, Law BE, Haberl H, Luyssaert S (2012) Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 4:611–616CrossRefGoogle Scholar
  56. Schwaiger H, Zimmer B (2001) A comparison of fuel consumption and greenhouse gas emissions from forest operations in Europe. In: Karjalainen T, Zimmer B, Berg S, Welling J, Schwaiger H, Finér L, Cortijo P (eds) Energy, carbon and other material flows in the life cycle assessment of forestry and forest products. European Forest Institute, Joensuu, pp 33–50Google Scholar
  57. Schweinle J (1997) Ökobilanzen für Forst und Holz. Forschungsreport 2:32–35Google Scholar
  58. Schweinle J (2000) Analyse und Bewertung der forstlichen Produktion als Grundlage für weiterführende forst- und holzwirtschaftliche Produktlinien-Analysen. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Hamburg, Germany, No. 184, p 131Google Scholar
  59. Sonne E (2006) Greenhouse gas emissions from forestry operations: a life cycle assessment. J Environ Qual 35:1439–1450CrossRefGoogle Scholar
  60. Thrän et al. (2012) Methodenhandbuch. Stoffstromorientierte Bilanzierung der Klimagaseffekte. Methoden zur Bestimmung von Technologiekennwerten, Gestehungskosten und Klimagaseffekten von Vorhaben im Rahmen des BMU-Förderprogramms “Energetische Biomassenutzung”. Schriftenreihe des BMU-Förderprogramms “Energetische Biomassenutzung”, Berlin, Germany, p 121Google Scholar
  61. Valente C, Brekke A (2013) A framework for LCA for sustainability: comparing different types of boreal forests. Commissioned report, Ostfoldforskning, ISSN 0803-6659, p 42Google Scholar
  62. Valente C, Spinelli R, Hillring BG (2011) LCA of environmental and socio-economic impacts related to wood energy production in alpine conditions: Valle di Fiemme (Italy). J Cleaner Prod 19:1931–1938CrossRefGoogle Scholar
  63. Von Borgstede C, Andersson M, Johnsson F (2013) Public attitudes to climate change and carbon mitigation—implications for energy-associated behaviours. Energ Policy 57:182–193CrossRefGoogle Scholar
  64. Werner F, Althaus HJ, Künninger T, Richter K (2007) Life cycle inventories of wood as fuel and construction material. 9, pp 1-165. ecoinvent report No. 9, EMPA Dübendorf, Switzerland, p 165Google Scholar
  65. White MK, Gower ST, Ahl DE (2005) Life cycle inventories of roundwood production in northern Wisconsin: inputs into an industrial forest carbon budget. For Ecol Manag 219:13–28CrossRefGoogle Scholar
  66. Whittaker CL, Mortimer ND, Matthews RW (2010) Understanding the carbon footprint of timber transport in the United Kingdom. North Energy, report, p 56Google Scholar
  67. Whittaker CL, Mortimer N, Murphy R, Matthews R (2011) Energy and greenhouse gas balance of the use of forest residues for bioenergy production in the UK. Biomass Bioenergy 35:4581–4594CrossRefGoogle Scholar
  68. WWF (2012) Worldwide Fund for Nature. Living planet report. Biodiversity, biocapacity and better choices. Gland, Switzerland, p 162Google Scholar
  69. Yoshioka T, Aruga K, Nitami T, Kobayashi H, Sakai H (2005) Energy and carbon dioxide (CO2) balance of logging residues as alternative energy resources: system analysis based on the method of a life cycle inventory (LCI) analysis. J For Res 10:125–134CrossRefGoogle Scholar
  70. Zah R, Boni H, Gauch M, Hischier R, Lehmann M, Wager P (2007) Life cycle assessment of energy products: environmental assessment of biofuels. Final Report, EMPA—technology and society Lab, Auftrag des Bundesamtes für Energie, des Bundesamtes für Umwelt und des Bundesamtes für Landwirtschaft, Bern, Switzerland, p 20Google Scholar
  71. Zanchi G, Pena N, Bird N (2011) Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Bioenergy 4:761–772Google Scholar
  72. Zimmer B, Kairi M (2001) LCA of Laminated Veneer Lumber—Finnforest Study. In: European Commission (Ed.). COST Action E9–Life cycle assessment on forestry and forest products. Brussels, pp 89-100Google Scholar
  73. Zimmer B, Wegener G (1996) Stoff- und Energieflüsse vom Forst zum Sägewerk. Holz Roh Werkst 54:217–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniel Klein
    • 1
  • Christian Wolf
    • 2
  • Christoph Schulz
    • 1
  • Gabriele Weber-Blaschke
    • 2
  1. 1.Bavarian State Institute of ForestryFreisingGermany
  2. 2.Technische Universität München, Chair of Wood ScienceFreisingGermany

Personalised recommendations