Scenario analysis of life cycle greenhouse gas emissions of Darjeeling tea

  • Georg Cichorowski
  • Bettina Joa
  • Heidi Hottenroth
  • Mario Schmidt
CARBON FOOTPRINTING

Abstract

Purpose

Following water, tea is the second most consumed drink worldwide and has the peculiarity that not only its production but especially its preparation can be associated with considerable greenhouse gas (GHG) emissions. The aims of this study were to calculate the cradle-to-gate and cradle-to-grave product carbon footprint (PCF) of Darjeeling tea and to identify potentials to reduce GHG emissions along its life cycle. Therefore, various options for action and their impact on the PCF were modeled by using a scenario analysis.

Methods

To assess the PCF of Darjeeling tea, the method based on ISO/TS 14067 was used with some limitations. Besides one base scenario, alternative cradle-to-gate scenarios and different use profiles were modeled. The results were split in a cradle-to-gate and a cradle-to-grave perspective. For the cradle-to-gate phase a functional unit of one kilogram loose black Darjeeling tea was chosen, whereas for the cradle-to-grave phase one liter black Darjeeling tea that is prepared and ready to drink in Germany was seen as appropriate functional unit. Primary data for the present study has been collected from local farmers, manufacturers, and agents in Darjeeling, Kolkata, and Rotterdam. For secondary data, the database ecoinvent 2.2 was mainly used.

Results and discussion

The cradle-to-gate PCF of 1 kg Darjeeling tea is between 7.1 and 25.3 kg CO2e depending on the cultivation method, energy sources used, or mode of transportation. The cradle-to-grave PCF for 1 l organic Darjeeling tea is about 0.15 kg CO2e. The largest share, 51 %, makes up the use phase, which is clearly dominated by the boiling of water. The variety of possible use profiles yields results of great breadth. It shows that the life cycle of organic Darjeeling tea transported by ship, depending on the preparation variants can cause emissions from 0.12 to 0.51 kg CO2e/l tea.

Conclusions

The main reduction potentials for GHG emissions were identified in the process of water boiling, the intercontinental transport mode, and the cultivation method. Since the climate impact of tea strongly depends on the way in which it is prepared, the consumer has a decisive influence on the PCF. Therefore, in order to make a reliable statement about the climate performance of consumer goods such as tea, the whole life cycle must be considered.

Keywords

Conventional Cradle-to-gate Darjeeling tea Greenhouse gas emissions Organic Product carbon footprint Scenario analysis 

Supplementary material

11367_2014_840_MOESM1_ESM.docx (42 kb)
ESM 1(DOCX 41 kb)

References

  1. Beutgen M (2012) Tee ist das beliebteste Getränk der Welt. Deutscher Teeverband e.V, HamburgGoogle Scholar
  2. BGK BHE (2004) Informationsdienst Humuswirtschaft & KomPost 3/04. Koeln, GermanyGoogle Scholar
  3. BMELV (2009) Report on active climate protection in the agriculture, forestry and food industries and on adaptation of agriculture and forestry to climate change, September 2008 [online]Google Scholar
  4. Brita Gruppe (2012) Nachhaltigkeitsbericht 2012. TaunussteinGoogle Scholar
  5. BSI (2008) PAS 2050:2008 Publicly available specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, LondonGoogle Scholar
  6. BSI (2011) PAS 2050:2011 Publicly available specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, LondonGoogle Scholar
  7. BSI (2012) PAS 2050-1:2012 Assessment of the life cycle greenhouse gas emissions from horticultural products. Supplementary requirements for the cradle to gate stages of GHG assessments of horticultural products undertaken in accordance with PAS 2050. British Standards Institution, LondonGoogle Scholar
  8. Busser S, Jungbluth N (2009) The role of flexible packaging in the life cycle of coffee and butter. Int J Life Cycle Assess 14(1):80–91CrossRefGoogle Scholar
  9. de Monte M, Padoano E, Pozzetto D (2005) Alternative coffee packaging: an analysis from a life cycle point of view. J Food Eng 66:405–411CrossRefGoogle Scholar
  10. Doublet G, Jungbluth N (2010) Life cycle assessement of drinking Darjeeling tea. Conventional and organic Darjeeling tea. ESU-services Ltd., UsterGoogle Scholar
  11. EC-JRC - European Commission - Joint Research Centre and Institute for Environment and Sustainability (2010) International reference life cycle data system (ILCD) handbook—general guide for life cycle assessment—detailed guidance, European Union EUR24708., http://lct.jrc.ec.europa.eu/Google Scholar
  12. ecoinvent Centre (2010) ecoinvent data v2.2. ecoinvent reports No. 1-25. Swiss Centre for Life Cycle Inventories, Duebendorf, SwitzerlandGoogle Scholar
  13. EPA (2012) Composting. http://epa.gov/climatechange/wycd/waste/downloads/Composting.pdf. Accessed 19.08.2013
  14. Hassard HA, Couch MH, Techa-erawan T, McLellan BC (2014) Product carbon footprint and energy analysis of alternative coffee products in Japan. J Cleaner Prod 73:310–321CrossRefGoogle Scholar
  15. Humbert S, Loerincik Y, Rossi V, Margni M, Jolliet O (2009) Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). J Cleaner Prod 17(15):1351–1358CrossRefGoogle Scholar
  16. IPCC (2006a) Volume 4. Agriculture, forestry and other land use. Chapter 11. Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, Geneva, SwitzerlandGoogle Scholar
  17. IPCC (2006b) Volume 5. Waste. Chapter 4. Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, Geneva, SwitzerlandGoogle Scholar
  18. IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, Pachauri, R.K. and Reisinger, A. (eds.)]. Fourth Assessment Report IPCC, Geneva, SwitzerlandGoogle Scholar
  19. ISO (2013) ISO/TS 14067: Greenhouse gases–carbon footprint of products—requirements and guidelines for quantification and communication. International Organization for Standardization, GenevaGoogle Scholar
  20. Jungbluth N (2006) Vergleich der Umweltbelastungen von Hahnenwasser und Mineralwasser. Gas, Wasser, Abwasser 2006(3):215–219Google Scholar
  21. Jungbluth N, Chudacoff M, Dauriat A, Dinkel F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Schleiss K, Spielmann M, Stettler C, Sutter J (2007) Life cycle inventories of bioenergy. ecoinvent report No. 17. Swiss Centre for Life Cycle Inventories, Duebendorf, SwitzerlandGoogle Scholar
  22. Linzner R, Mostbauer P, Binner E, Smidt E (2005) Klimarelevanz der Kompostierung unter Berücksichtigung der Verfahrenstechnik und Kompostanwendung (KliKo). Endbericht im Auftrag der MA 48. Institut für Abfallwirtschaft, Universität für Bodenkultur Wien, Vienna, AustriaGoogle Scholar
  23. Oberascher C, Stamminger R, Pakula C (2011) Energy efficiency in daily food preparation. Int J Consumer Studies 35:201–211CrossRefGoogle Scholar
  24. Quack D, Rüdenauer I (2005) Stoffstromanalyse relevanter Produktgruppen. Energie- und Stoffströme der privaten Haushalte in Deutschland im Jahr 2005 [online]Google Scholar
  25. Schmied M, Knörr W (2011) Berechnung von Treibhausgasemissionen in Spedition und Logistik: Begriffe, Methoden. Beispiele. Deutscher Speditions- und Logistikverband, BonnGoogle Scholar
  26. Stiftung Warentest (2006) Wasserkocher: Viele schlechte Noten, http://www.test.de/Wasserkocher-Viele-schlechte-Noten-1401054-2401054/. 2013
  27. Teufel J, Brommer E, Stratmann B (2011) Grobscreening zur Typisierung von Produktgruppen im Lebensmittelbereich in Orientierung am zu erwartenden CO2e-Fußabdruck - Materialband. LANUV-Fachbericht 29. Recklinghausen, GermanyGoogle Scholar
  28. Umweltbundesamt (2014) ProBas - Prozessorientierte Basisdaten für Umweltmanagement-Instrumente. http://www.probas.umweltbundesamt.de/php/themen.php?&prozessid={112E951E-0C6D-4C2F-B404-C393B35F089A}&id=4584374272&step=4&search=. Accessed 20.01.2014
  29. WRI/WBCSD (2011) Greenhouse gas protocol–product life cycle accounting and reporting standard. World Resources Institute and World Business Conucil for Sustainable Development, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Georg Cichorowski
    • 1
  • Bettina Joa
    • 2
  • Heidi Hottenroth
    • 2
  • Mario Schmidt
    • 2
  1. 1.Society for Institutional AnalysisDarmstadt University of Applied SciencesDarmstadtGermany
  2. 2.Institute for Industrial EcologyPforzheim University of Applied SciencesPforzheimGermany

Personalised recommendations