An environmental and economic life cycle assessment of rooftop greenhouse (RTG) implementation in Barcelona, Spain. Assessing new forms of urban agriculture from the greenhouse structure to the final product level

  • Esther Sanyé-MengualEmail author
  • Jordi Oliver-Solà
  • Juan Ignacio Montero
  • Joan Rieradevall



Rooftop greenhouses (RTGs) are increasing as a new form of urban agriculture. Several environmental, economic, and social benefits have been attributed to the implementation of RTGs. However, the environmental burdens and economic costs of adapting greenhouse structures to the current building legislation were pointed out as a limitation of these systems in the literature. In this sense, this paper aims to analyse the environmental and economic performance of RTGs in Barcelona.


A real RTG project is here analysed and compared to an industrial greenhouse system (i.e. multi-tunnel), from a life cycle perspective. Life cycle assessment (LCA) and life cycle costing (LCC) methods are followed in the assessment. The analysis is divided into three parts that progressively expand the system boundaries: greenhouse structure (cradle-to-grave), at the production point (cradle-to-farm gate), and at the consumption point (cradle-to-consumer). The applied LCIA methods are the ReCiPe (hierarchical, midpoint) and the cumulative energy demand. A cost-benefit analysis (CBA) approach is considered in the LCC. For the horticultural activity, a crop yield of 25 kg · m−2 is assumed for the RTG reference scenario. However, sensitivity analyses regarding the crop yield are performed during the whole assessment.

Results and discussion

The greenhouse structure of an RTG has an environmental impact between 17 and 75 % higher and an economic cost 2.8 times higher than a multi-tunnel greenhouse. For the reference scenario (yield 25 kg · m−2), 1 kg of tomato produced in an RTG at the production point has a lower environmental impact (10–19 %) but a higher economic cost (24 %) than in a multi-tunnel system. At the consumption point, environmental savings are up to 42 % for local RTGs tomatoes, which are also 21 % cheaper than conventional tomatoes from multi-tunnel greenhouses in Almeria. However, the sensitivity assessment shows that the crop efficiency is determinant. Low yields can produce impacting and expensive vegetables, although integrated RTGs, which can take advantage from the residual energy from the building, can lead to low impacting and cheap local food products.


RTGs face law limitations that make the greenhouse structure less environmentally friendly and less economically competitive than current industrial greenhouses. However, as horticultural systems and local production systems, RTGs can become an environmentally friendly option to further develop urban agriculture. Besides, attention is paid to the crop yield and, thus, further developments on integrated RTGs and their potential increase in crop yields (i.e. exchange of heat and CO2 with the building) are of great interest.


Building-integrated agriculture Industrial ecology Local production Rooftop farming Urban agriculture 



The authors thank the architects and technical staff of H arquitectes for the information supplied, the Spanish Ministerio de Economía y Competitividad (MINECO) for the financial support to the research project “Agrourban sustainability through rooftop greenhouses. Ecoinnovation on residual flows of energy, water and CO2 for food production” (CTM2013-47067-C2-1-R), and the Spanish Ministerio de Educación for awarding a research scholarship (AP2010-4044) to Esther Sanyé Mengual.

Supplementary material

11367_2014_836_MOESM1_ESM.docx (814 kb)
ESM 1 (DOCX 813 kb)


  1. Antón A, Montero J, Muñoz P, Castells F (2005) LCA and tomato production in Mediterranean greenhouses. Int J Agric Resour Gov Ecol 4:102–112Google Scholar
  2. Arosemena G (2012) Urban agriculture: spaces of cultivation for a sustainable city. P 128Google Scholar
  3. Barthel S, Isendahl C (2013) Urban gardens, agriculture, and water management: sources of resilience for long-term food security in cities. Ecol Econ 86:224–234CrossRefGoogle Scholar
  4. BOE (2004) REAL DECRETO 2267/2004, de 3 de diciembre, por el que se aprueba el Reglamento de seguridad contra incendios en los establecimientos industriales. Boletín del Estado 303:41194–41255Google Scholar
  5. BOE (2006) REAL DECRETO 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación. Boletín del Estado 74:11816–11831Google Scholar
  6. BOE (2010) Ley 3/2010, de 18 de febrero, de prevención y seguridad en materia de incendios en establecimientos, actividades, infraestructuras y edificios. Boletín del Estado 89:32918–32943Google Scholar
  7. CBS (2013a) Electricity; production by energy source. Den HaagGoogle Scholar
  8. CBS (2013b) Renewable electricity; gross and net production, imports and exports. Den HaagGoogle Scholar
  9. CEN (2001) EN 13031. Greenhouses: design and construction—part 1: commercial production greenhousesGoogle Scholar
  10. Cerón-Palma I (2012) Strategies for sustainable urban systems: introducing eco-innovation in buildings in Mexico and Spain. Universitat Autònoma de, BarcelonaGoogle Scholar
  11. Cerón-Palma I, Sanyé-Mengual E, Oliver-Solà J et al. (2011) Energy savings from a roof top greenhouse in a public building of Barcelona, Spain. 6th Int. Conf. Ind. Ecol. Sci. Syst. Sustain. (Berkeley, 7–10 June 2011)Google Scholar
  12. Cerón-Palma I, Sanyé-Mengual E, Oliver-Solà J et al (2012) Barriers and opportunities regarding the implementation of rooftop eco. greenhouses (RTEG) in Mediterranean cities of Europe. J Urban Technol 19:87–103CrossRefGoogle Scholar
  13. DAPLAST (2014) Plastic trays for transportation. Accessed 22 Jul 2014
  14. DECC (2014) UK energy statistics: 2013 provisional data. LondonGoogle Scholar
  15. Despommier D (2008) Cities dream of a second agricultural revolution. Sp Mag 488:103–105Google Scholar
  16. Despommier D (2009) The rise of vertical farms. Sci Am 301:80–87CrossRefGoogle Scholar
  17. Despommier D (2010) The vertical farm: feeding the world in the 21st century. Thomas Dunne Books, New YorkGoogle Scholar
  18. Despommier D (2011) The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J für Verbraucherschutz Leb 6:233–236CrossRefGoogle Scholar
  19. Droege P (2012) 100 per cent renewable: energy autonomy in action. Earthscan, LondonGoogle Scholar
  20. EC-JRC (2010) International Reference Life Cycle Data System (ILCD) handbook: general guide for life cycle assessment—detailed guidanceGoogle Scholar
  21. Edwards-Jones G, Milà i Canals L, Hounsome N et al (2008) Testing the assertion that “local food is best”: the challenges of an evidence-based approach. Trends Food Sci Technol 19:265–274CrossRefGoogle Scholar
  22. Ekvall T, Tillman A-M (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2:155–162CrossRefGoogle Scholar
  23. European Commission (2014) Communication from the Commission to the European parliament, the council, the European economic and social committee and the committee of the regions: Towards a circular economy: A zero waste programme for EuropeGoogle Scholar
  24. EUROSTAT (2014) Energy statistics. Accessed 2 May 2014
  25. Generalitat de Catalunya (DGTM) (2012) Observatori de costos del transport de mercaderies per carretera a Catalunya [Observatory of road freight transport costs in Catalonia]. Butlletí Transp, p 64Google Scholar
  26. Germer J, Sauerborn J, Asch F et al (2011) Skyfarming an ecological innovation to enhance global food security. J für Verbraucherschutz Leb 6:237–251CrossRefGoogle Scholar
  27. Goedkoop M, Heijungs R, Huijbregts M et al (2009) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; first edition report I: characterisation. Ministerie van VROM, Den HaagGoogle Scholar
  28. González M, Céspedes López A, González Céspedes A (2008) PrHo V. 2,0: Programa de Riego para cultivos Hortícolas en invernadero. Serie Las Palmerillas - Cuadernos técnicos 01. AlmeríaGoogle Scholar
  29. Hischier R, Weidema B, Althaus H et al. (2010) Implementation of life cycle impact assessment methods. Final report ecoinvent v2.2 No. 3. Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  30. Hunkeler D, Lichtenvort K, Rebitzer G (2008) Environmental life cycle costing. CRC Press, Boca RatónCrossRefGoogle Scholar
  31. IPCC (2007) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp 12–17Google Scholar
  32. ISO (2006) ISO 14040: environmental management - life cycle assessment - principles and framework. International Organization for Standardization, GenevaGoogle Scholar
  33. ISO (2008) ISO 15686–5: Buildings and constructed assets—service-life planning—part 5: life-cycle costingGoogle Scholar
  34. ITeC (2012) Institut de Tecnologia de la Construcció de Catalunya. MetaBase ITeC, Online ITeC database: prices, technical details, companies, certificates, product pictures and environmental data. Accessed 28 Sep 2012
  35. Jones A (2002) An environmental assessment of food supply chains: a case study on dessert apples. Environ Manage 30:560–576CrossRefGoogle Scholar
  36. Kirwan J, Maye D (2012) Food security framings within the UK and the integration of local food systems. J Rural Stud 29:91–100Google Scholar
  37. MAGRAMA (2014) Food consumption panel 2013: Catalonia. MadridGoogle Scholar
  38. Martínez-Blanco J, Muñoz P, Antón A, Rieradevall J (2011) Assessment of tomato Mediterranean production in open-field and standard multi-tunnel greenhouse, with compost or mineral fertilizers, from an agricultural and environmental standpoint. J Clean Prod 19:985–997CrossRefGoogle Scholar
  39. MercaBarna (2014) Mercabarna stats: vegetables—commercialized tonnes—2013. Accessed 30 Apr 2014
  40. Montero J, Stanghellini C, Castilla N (2009) Greenhouse technology for sustainable production in mild winter climate areas: trends and needs. Proc. Int. Symp. Strateg. Towar. Sustain. Prot. Cultiv. Mild Winter ClimGoogle Scholar
  41. Montero J, Antón A, Torrellas M et al. (2011) EUPHOROS Deliverable 5. Report on environmental and economic profile of present greenhouse production systems in Europe. European Commission FP7 RDT Project Euphoros (Reducing the need for external inputs in high value protected horticultural and ornament). Accessed 10 Jul 2013
  42. PRé Consultants (2011) SimaPro software version 7.3.3Google Scholar
  43. REE (2013) Daily real-time electricity demand in Spain. Accessed 25 Sep 2013
  44. Resh H (2012) Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower, 7th ed. 560Google Scholar
  45. Sanyé-Mengual E, Cerón-Palma I, Oliver-Solà J et al (2013) Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas. J Sci Food Agric 93:100–109CrossRefGoogle Scholar
  46. Specht K, Siebert R, Hartmann I et al (2014) Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings. Agric Human Values 31:33–51CrossRefGoogle Scholar
  47. Swarr TE, Hunkeler D, Klöpffer W et al (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess 16:389–391CrossRefGoogle Scholar
  48. Swiss Center for Life Cycle Inventories (2010) Ecoinvent Data v2.2Google Scholar
  49. Thomaier S, Specht K, Henckel D et al (2014) Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renew Agr Food Syst (Online First). doi: 10.1017/S1742170514000143
  50. Torreggiani D, Dall’Ara E, Tassinari P (2012) The urban nature of agriculture: bidirectional trends between city and countryside. Cities 29:412–416CrossRefGoogle Scholar
  51. UNEP (2011) Towards a green economy: pathways to sustainable development and poverty eradication. UNEP, BeijingGoogle Scholar
  52. Wallgren C, Höjer M (2009) Eating energy—identifying possibilities for reduced energy use in the future food supply system. Energy Policy 37:5803–5813CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Esther Sanyé-Mengual
    • 1
    Email author
  • Jordi Oliver-Solà
    • 1
    • 2
  • Juan Ignacio Montero
    • 1
    • 3
  • Joan Rieradevall
    • 1
    • 4
  1. 1.Sostenipra (ICTA-IRTA-Inèdit)-Institute of Environmental Science and Technology (ICTA)Universitat Autònoma de Barcelona (UAB)BellaterraSpain
  2. 2.Inèdit. Inèdit Innovació, S.L. UAB Research ParkBarcelonaSpain
  3. 3.Institut de Recerca i Tecnologia Agroalimentàries (IRTA)BarcelonaSpain
  4. 4.Departament of Chemical EngineeringUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations