Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop

  • Peter Fantke
  • Olivier Jolliet
  • John S. Evans
  • Joshua S. Apte
  • Aaron J. Cohen
  • Otto O. Hänninen
  • Fintan Hurley
  • Matti J. Jantunen
  • Michael Jerrett
  • Jonathan I. Levy
  • Miranda M. Loh
  • Julian D. Marshall
  • Brian G. Miller
  • Philipp Preiss
  • Joseph V. Spadaro
  • Marko Tainio
  • Jouni T. Tuomisto
  • Charles J. Weschler
  • Thomas E. McKone
LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS

Abstract

Purpose

Fine particulate matter (PM2.5) is considered to be one of the most important environmental factors contributing to the global human disease burden. However, due to the lack of broad consensus and harmonization in the life cycle assessment (LCA) community, there is no clear guidance on how to consistently include health effects from PM2.5 exposure in LCA practice. As a consequence, different models are currently used to assess life cycle impacts for PM2.5, sometimes leading to inconsistent results. In a global effort initiated by the United Nations Environment Programme (UNEP)/Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, respiratory inorganics’ impacts expressed as health effects from PM2.5 exposure were selected as one of the initial impact categories to undergo review with the goal of providing global guidance for implementation in life cycle impact assessment (LCIA). The goal of this paper is to summarize the current knowledge and practice for assessing health effects from PM2.5 exposure and to provide recommendations for their consistent integration into LCIA.

Methods

A task force on human health impacts was convened to build the framework for consistently quantifying health effects from PM2.5 exposure and for recommending PM2.5 characterization factors. In an initial Guidance Workshop, existing literature was reviewed and input from a broad range of internationally recognized experts was obtained and discussed. Workshop objectives were to identify the main scientific questions and challenges for quantifying health effects from PM2.5 exposure and to provide initial guidance to the impact quantification process.

Results and discussion

A set of 10 recommendations was developed addressing (a) the general framework for assessing PM2.5-related health effects, (b) approaches and data to estimate human exposure to PM2.5 using intake fractions, and (c) approaches and data to characterize exposure-response functions (ERFs) for PM2.5 and to quantify severity of the diseases attributed to PM2.5 exposure. Despite these advances, a number of complex issues, such as those related to nonlinearity of the ERF and the possible need to provide different ERFs for use in different geographical regions, require further analysis.

Conclusions and outlook

Questions of how to refine and improve the overall framework were analyzed. Data and models were proposed for harmonizing various elements of the health impact pathways for PM2.5. Within the next two years, our goal is to build a global guidance framework and to determine characterization factors that are more reliable for incorporating the health effects from exposure to PM2.5 into LCIA. Ideally, this will allow quantification of the impacts of both indoor and outdoor exposures to PM2.5.

Keywords

Air pollution Exposure-response function Fine particulate matter Global guidance Human health effects Intake fraction Life cycle impact assessment (LCIA) 

References

  1. Abrahamowicz M, Schopflocher T, Leffondré K, du Berger R, Krewski D (2003) Flexible modeling of exposure-response relationship between long-term average levels of particulate air pollution and mortality in the American Cancer Society study. J Toxicol Environ Health 66:1625–1654CrossRefGoogle Scholar
  2. Apte JS, Bombrun E, Marshall JD, Nazaroff WW (2012) Global intraurban intake fractions for primary air pollutants from vehicles and other distributed sources. Environ Sci Technol 46:3415–3423CrossRefGoogle Scholar
  3. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G et al (2014) Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383:785–795CrossRefGoogle Scholar
  4. Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, Koopman LP, Neijens HJ, Gerritsen J, Kerkhof M, Heinrich J, Bellander T, Brunekreef B (2002) Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respr Crit Care 166:1092–1098CrossRefGoogle Scholar
  5. Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378CrossRefGoogle Scholar
  6. Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS et al (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122:397–403Google Scholar
  7. Chen H, Goldberg MS, Villeneuve PJ (2008) A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health 23:243–297Google Scholar
  8. Chen H, Burnett RT, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Copes R (2013) Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ Health Perspect 121:804–810CrossRefGoogle Scholar
  9. COMEAP (2009) Long-term exposure to air pollution: effect on mortality, health protection agency for the committee on the medical effects of air pollutants. UK, LondonGoogle Scholar
  10. COMEAP (2010) The mortality effects of long-term exposure to particulate air pollution in the United Kingdom, health protection agency for the committee on the medical effects of air pollutants. UK, LondonGoogle Scholar
  11. Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M et al (2013) Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect 121:367–373CrossRefGoogle Scholar
  12. Delfino RJ, Sioutas C, Malik S (2005) Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspect 113:934–946CrossRefGoogle Scholar
  13. Donaldson K, Gilmour MI, MacNee W (2000) Asthma and PM10. Respir Res 1:12–15CrossRefGoogle Scholar
  14. EC (2010a) International Reference Life Cycle Data System (ILCD) handbook: general guide for life cycle assessment—detailed guidance, 1st edn. European Commission, BrusselsGoogle Scholar
  15. EC (2010b) International Reference Life Cycle Data System (ILCD) handbook: framework and requirements for LCIA models and indicators, 1st edn. European Commission, BrusselsGoogle Scholar
  16. EC (2010c) International Reference Life Cycle Data System (ILCD) handbook: analysis of existing environmental impact assessment methodologies for use in life cycle assessment, 1st edn. European Commission, BrusselsGoogle Scholar
  17. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21CrossRefGoogle Scholar
  18. Gavett SH, Koren HS (2001) The role of particulate matter in exacerbation of atopic asthma. Int Arch Allergy Immunol 124:109–112CrossRefGoogle Scholar
  19. Greco SL, Wilson AM, Spengler JD, Levy JI (2007) Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos Environ 41:1011–1025CrossRefGoogle Scholar
  20. Gronlund CJ, Humbert S, Shaked S, O’Neill MS, Jolliet O (2014) Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Qual Atmos Health. doi:10.1007/s11869-014-0283-6 Google Scholar
  21. Hänninen O, Knol AB, Jantunen M, Lim T-A, Conrad A, Rappolder M, Carrer P, Fanetti A-C, Kim R, Buekers J, Torfs R, Iavarone I, Classen T, Hornberg C, Mekel OCL (2014) Environmental burden of disease in Europe: estimates for nine stressors in six countries. Environ Health Perspect 122:439–446Google Scholar
  22. Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101CrossRefGoogle Scholar
  23. Hauschild MZ (2005) Assessing environmental impacts in a life-cycle perspective. Environ Sci Technol 39:81A–88ACrossRefGoogle Scholar
  24. Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697CrossRefGoogle Scholar
  25. Heath GA, Granvold PW, Hoats AS, Nazaroff W, Nazaroff WW (2006) Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmos Environ 40:7164–7177CrossRefGoogle Scholar
  26. HEI (2013) Understanding the health effects of ambient ultrafine particles. Health Effects Institute, BostonGoogle Scholar
  27. Hellweg S, Demou E, Bruzzi R, Meijer A, Rosenbaum RK, Huijbregts MAJ, McKone TE (2009) Integrating human indoor air pollutant exposure within life cycle impact assessment. Environ Sci Technol 43:1670–1679CrossRefGoogle Scholar
  28. Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, Neumann J, Zheng H, Bonta D (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci U S A 106:2077–2082CrossRefGoogle Scholar
  29. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013) Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health 12:43–57CrossRefGoogle Scholar
  30. Humbert S, Manneh R, Shaked S, Wannaz C, Horvath A, Deschênes L, Jolliet O, Margni M (2009) Assessing regional intake fractions in North America. Sci Total Environ 407:4812–4820CrossRefGoogle Scholar
  31. Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, McKone TE, Horvath A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45:4808–4816CrossRefGoogle Scholar
  32. Hurley F, Alistair H, Cowie H, Holland M, Miller B, Pye S, Watkiss P (2005) Methodology for the cost-benefit analysis for CAFE: vol. 2: health impact assessment. AEA Technology Assessment, OxonGoogle Scholar
  33. ISO (2006) International Standard. Environmental management—life cycle assessment—principles and framework. International Organization for Standardization, GenevaGoogle Scholar
  34. Jolliet O, Frischknecht R, Bare J, Boulay A-M, Bulle C et al (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19:962–967CrossRefGoogle Scholar
  35. Kelly FJ, Fussell JC (2012) Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 60:504–526CrossRefGoogle Scholar
  36. Kheirbek I, Wheeler K, Walters S, Kass D, Matte T (2013) PM2.5 and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution. Air Qual Atmos Health 6:473–486CrossRefGoogle Scholar
  37. Krewski D, Burnett RT, Goldberg MS, Hoover K, Siemiatycki J, Jerrett M, Abrahamowicz M, White WH (2000) Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of particulate air pollution and mortality. Health Effects Institute, BostonGoogle Scholar
  38. Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F, Puybonnieux-Texier V, Quénel P, Schneider J, Seethaler R, Vergnaud J-C, Sommer H (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356:795–801CrossRefGoogle Scholar
  39. Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality. Am J Respr Crit Care 173:667–672CrossRefGoogle Scholar
  40. Leksell I, Rabl A (2001) Air pollution and mortality: quantification and valuation of years of life lost. Risk Anal 21:843–857CrossRefGoogle Scholar
  41. Levy JI, Wolff SK, Evans JS (2002) A regression-based approach for estimating primary and secondary particulate matter intake fractions. Risk Anal 22:895–904CrossRefGoogle Scholar
  42. Levy JI, Wilson AM, Evans JS, Spengler JD (2003) Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia. Environ Sci Technol 37:5528–5536CrossRefGoogle Scholar
  43. Levy JI, Diez D, Dou Y, Barr CD, Dominici F (2012) A meta-analysis and multisite time-series analysis of the differential toxicity of major fine particulate matter constituents. Epidemiology 175:1091–1099Google Scholar
  44. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260CrossRefGoogle Scholar
  45. Lippmann M, Chen L-C (2009) Health effects of concentrated ambient air particulate matter (CAPs) and its components. Crit Rev Toxicol 39:865–913CrossRefGoogle Scholar
  46. Lipsett MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, Smith DF, Garcia C, Chang ET, Bernstein L (2011) Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am J Respr Crit Care 184:828–835CrossRefGoogle Scholar
  47. Lobscheid AB, Nazaroff WW, Spears M, Horvath A, McKone TE (2012) Intake fractions of primary conserved air pollutants emitted from on-road vehicles in the United States. Atmos Environ 63:298–305CrossRefGoogle Scholar
  48. Loomis D, Grosse Y, Lauby-Secretan B, Ghissassi FE, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14:1262–1263CrossRefGoogle Scholar
  49. Marshall JD, Riley WJ, McKone TE, Nazaroff WW (2003) Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin. Atmos Environ 37:3455–3468CrossRefGoogle Scholar
  50. Marshall JD, Teoh S-K, Nazaroff WW (2005) Intake fraction of nonreactive vehicle emissions in US urban areas. Atmos Environ 39:1363–1371CrossRefGoogle Scholar
  51. Mehta S, Shin H, Burnett R, North T, Cohen AJ (2013) Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Qual Atmos Health 6:69–83CrossRefGoogle Scholar
  52. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. New Engl J Med 356:447–458CrossRefGoogle Scholar
  53. Murray CJL, Lopez AD (1996a) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Harvard University Press, CambridgeGoogle Scholar
  54. Murray CJL, Lopez AD (1996b) Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 274:740–743CrossRefGoogle Scholar
  55. Murray CJL, Ezzati M, Flaxman AD, Lim S, Lozano R, Michaud C, Naghavi M, Salomon JA, Shibuya K, Vos T, Wikler D, Lopez AD (2012) GBD 2010: design, definitions, and metrics. Lancet 380:2063–2066CrossRefGoogle Scholar
  56. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  57. Ostro B (2004) Environmental burden of disease series, no. 5. Outdoor air pollution: assessing the environmental burden of disease at national and local levels. World Health Organization, GenevaGoogle Scholar
  58. Paulot F, Jacob DJ (2014) Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions. Environ Sci Technol 48:903–908CrossRefGoogle Scholar
  59. Pelucchi C, Negri E, Gallus S, Boffetta P, Tramacere I, La Vecchia C (2009) Long-term particulate matter exposure and mortality: a review of European epidemiological studies. BMC Public Health 9:453–460CrossRefGoogle Scholar
  60. Pope CA III, Dockery DW, Schwartz J (1995) Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol 7:1–18CrossRefGoogle Scholar
  61. Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141CrossRefGoogle Scholar
  62. Pope CA III, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120:941–948CrossRefGoogle Scholar
  63. Pope CA III, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M, Gapstur SM, Thun MJ (2011) Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect 119:1616–1621CrossRefGoogle Scholar
  64. Potting J, Preiss P, Seppälä J, Struijs J, Wiertz J, Blazek M, Heijungs R, Itsubo N, Masanet E, Nebel B, Nishioka Y, Payet J, Becaert V, Basset-Mens C, Jolliet O (2007) Current practice in LCIA of transboundary impact categories. report of task force 4 on transboundary impacts. UNEP/SETAC Life Cycle InitiativeGoogle Scholar
  65. Pregger T, Friedrich R (2009) Effective pollutant emission heights for atmospheric transport modelling based on real-world information. Environ Pollut 157:552–560CrossRefGoogle Scholar
  66. Puett RC, Hart JE, Yanosky JD, Paciorek C, Schwartz J, Suh H, Speizer FE, Laden F (2009) Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the nurses’ health study. Environ Health Perspect 117:1702–1706CrossRefGoogle Scholar
  67. Puett RC, Hart JE, Suh H, Mittleman M, Laden F (2011) Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. Environ Health Perspect 119:1130–1135CrossRefGoogle Scholar
  68. Rabl A (2005) Air pollution mortality: harvesting and loss of life expectancy. J Toxicol Environ Health 68:1175–1180CrossRefGoogle Scholar
  69. Ries FJ, Marshall JD, Brauer M (2009) Intake fraction of urban wood smoke. Environ Sci Technol 43:4701–4706CrossRefGoogle Scholar
  70. Riley WJ, McKone TE, Lai ACK, Nazaroff WW (2002) Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms. Environ Sci Technol 36:200–207CrossRefGoogle Scholar
  71. Rohr AC, Wyzga RE (2012) Attributing health effects to individual particulate matter constituents. Atmos Environ 62:130–152CrossRefGoogle Scholar
  72. Rückerl R, Schneider A, Breitner S, Cyrys J, Peters A (2011) Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 23:555–592CrossRefGoogle Scholar
  73. Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M et al (2012) Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. Lancet 380:2129–2143CrossRefGoogle Scholar
  74. Schwartz J, Coull B, Laden F, Ryan L (2008) The effect of dose and timing of dose on the association between airborne particles and survival. Environ Health Perspect 116:64–69CrossRefGoogle Scholar
  75. Squizzato S, Masiol M, Brunelli A, Pistollato S, Tarabotti E, Rampazzo G, Pavoni B (2013) Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmos Chem Phys 13:1927–1939CrossRefGoogle Scholar
  76. Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F (2013) Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project. Environ Health Perspect 121:1026–1033Google Scholar
  77. Stanek LW, Sacks JD, Dutton SJ, Dubois J-JB (2011) Attributing health effects to apportioned components and sources of particulate matter: an evaluation of collective results. Atmos Environ 45:5655–5663CrossRefGoogle Scholar
  78. Straif K, Cohen A, Samet J (2013) Air pollution and cancer. IARC scientific publication no. 161. International Agency for Research on Cancer, LyonGoogle Scholar
  79. Tainio M, Sofiev M, Hujo M, Tuomisto JT, Loh M, Jantunen MJ, Karppinen A, Kangas L, Karvosenoja N, Kupiainen K, Porvari P, Kukkonen J (2009) Evaluation of the European population intake fractions for European and Finnish anthropogenic primary fine particulate matter emissions. Atmos Environ 43:3052–3059CrossRefGoogle Scholar
  80. Tessum CW, Marshall JD, Hill JD (2012) A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States. Environ Sci Technol 46:11408–11417CrossRefGoogle Scholar
  81. Udo de Haes HA, Finnveden G, Goedkoop M, Hauschild MZ, Hertwich E, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer E, Müller-Wenk R, Olsen S, Pennington DW, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. SETAC, PensacolaGoogle Scholar
  82. van Zelm R, Huijbregts MAJ, den Hollander HA, van Jaarsveld HA, Sauter FJ, Struijs J, van Wijnen HJ, van de Meent D (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos Environ 42:441–453CrossRefGoogle Scholar
  83. Wang H, Dwyer-Lindgren L, Lofgren KT, Rajaratnam JK, Marcus JR, Levin-Rector A, Levitz CE, Lopez AD, Murray CJL (2012) Age-specific and sex-specific mortality in 187 countries, 1970-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2071–2094CrossRefGoogle Scholar
  84. Weichenthal S, Dufresne A, Infante-Rivard C (2007) Indoor ultrafine particles and childhood asthma: exploring a potential public health concern. Indoor Air 17:81–91CrossRefGoogle Scholar
  85. WHO (2006) Health risks of particulate matter from long-range transboundary air pollution, World Health Organization, European Centre for Environment and Health. Bonn, GermanyGoogle Scholar
  86. WHO (2013a) Health risks of air pollution in Europe—HRAPIE project recommendations for concentration-response functions for cost-benefit analysis of particulate matter, ozone and nitrogen dioxide. World Health Organization, GenevaGoogle Scholar
  87. WHO (2013b) Review of evidence on health aspects of air pollution—REVIHAAP project. World Health Organization, GenevaGoogle Scholar
  88. Xu L, Penner JE (2012) Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos Chem Phys 12:9479–9504CrossRefGoogle Scholar
  89. Zhou Y, Levy JI, Evans JS, Hammitt JK (2006) The influence of geographic location on population exposure to emissions from power plants throughout China. Environ Int 32:365–373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter Fantke
    • 1
  • Olivier Jolliet
    • 2
  • John S. Evans
    • 3
    • 4
  • Joshua S. Apte
    • 5
  • Aaron J. Cohen
    • 6
  • Otto O. Hänninen
    • 7
  • Fintan Hurley
    • 8
  • Matti J. Jantunen
    • 7
  • Michael Jerrett
    • 9
  • Jonathan I. Levy
    • 10
  • Miranda M. Loh
    • 11
  • Julian D. Marshall
    • 12
  • Brian G. Miller
    • 8
  • Philipp Preiss
    • 13
  • Joseph V. Spadaro
    • 14
  • Marko Tainio
    • 15
    • 16
  • Jouni T. Tuomisto
    • 7
  • Charles J. Weschler
    • 17
    • 18
  • Thomas E. McKone
    • 9
    • 19
  1. 1.Quantitative Sustainability Assessment Division, Department of Management EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.School of Public HealthUniversity of MichiganAnn ArborUSA
  3. 3.Department of Environmental HealthHarvard School of Public HealthBostonUSA
  4. 4.Cyprus International Institute for Environment and Public HealthCyprus University of TechnologyLimassolCyprus
  5. 5.Energy and Resources GroupUniversity of CaliforniaBerkeleyUSA
  6. 6.Health Effects InstituteBostonUSA
  7. 7.National Institute for Health and WelfareKuopioFinland
  8. 8.Institute of Occupational MedicineEdinburghUK
  9. 9.School of Public HealthUniversity of CaliforniaBerkeleyUSA
  10. 10.School of Public HealthBoston UniversityBostonUSA
  11. 11.Mel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonUSA
  12. 12.Department of Civil EngineeringUniversity of MinnesotaMinneapolisUSA
  13. 13.econcept AGZurichSwitzerland
  14. 14.Basque Centre for Climate ChangeBilbao BizkaiaSpain
  15. 15.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  16. 16.UKCRC Centre for Diet and Activity ResearchUniversity of CambridgeCambridgeUK
  17. 17.Environmental and Occupational Health Sciences InstituteRutgers UniversityPiscatawayUSA
  18. 18.International Centre for Indoor Environment and EnergyTechnical University of DenmarkKgs. LyngbyDenmark
  19. 19.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations