Advertisement

The International Journal of Life Cycle Assessment

, Volume 19, Issue 10, pp 1755–1766 | Cite as

Utilization of recovered wood in cascades versus utilization of primary wood—a comparison with life cycle assessment using system expansion

  • Karin HöglmeierEmail author
  • Gabriele Weber-Blaschke
  • Klaus Richter
WOOD AND OTHER RENEWABLE RESOURCES

Abstract

Purpose

A cascading utilization of resources is encouraged especially by legislative bodies. However, only few consecutive assessments of the environmental impacts of cascading are available. This study provides answers to the following questions for using recovered wood as a secondary resource: (1) Does cascading decrease impacts on the environment compared to the use of primary wood resources? (2) What aspects of the cascading system are decisive for the life cycle assessment (LCA) results?

Methods

We conducted full LCAs for cascading utilization options of waste wood and compared the results to functionally equivalent products from primary wood, thereby focusing on the direct effects cascading has on the environmental impacts of the systems. In order to compare waste wood cascading to the use of primary wood with LCA, a functional equivalence of the systems has to be achieved. We applied a system expansion approach, considering different options for providing the additionally needed energy for the cascading system.

Results and discussion

We found that the cascading systems create fewer environmental impacts than the primary wood systems, if system expansion is based on wood energy. The most noticeable advantages were detected for the impact categories of land transformation and occupation and the demand of primary energy from renewable sources. The results of the sensitivity analyses indicate that the advantage of the cascading system is robust against the majority of considered factors. Efficiency and the method of incineration at the end of life do influence the results.

Conclusions

To maximize the benefits and minimize the associated environmental impacts, cascading proves to be a preferable option of utilizing untreated waste wood.

Keywords

Cascading Life cycle assessment (LCA) Particleboard System expansion Recovered wood Waste wood 

Notes

Acknowledgments

The authors gratefully acknowledge the funding by the Bavarian State Ministry of Food, Agriculture and Forestry. The authors wish to thank Nathaniel Smith for language correction and the three reviewers for valuable comments on a previous version of this work.

References

  1. BMU-German Federal Ministry for the Environment Nature Conservation and Nuclear Safety (2012) Deutsches Ressourceneffizienzprogramm (ProgRess), BerlinGoogle Scholar
  2. Brandão M, Levasseur A, Kirschbaum MUF, Weidema BP, Cowie AL, Jørgensen SV, Hauschild MZ, Pennington DW, Chomkhamsri K (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18(1):230–240CrossRefGoogle Scholar
  3. Bystricky M, Knödlseder T, Weber-Blaschke G, Faulstich M (2010) Comparing environmental impacts of electricity, heat and fuel from energy crops: evaluating biogas utilization pathways by the basket of benefit methodology. Eng Life Sci 10(6):570–576CrossRefGoogle Scholar
  4. DIN Deutsches Institut für Normung e. V. (2005) DIN EN 13986 - Holzwerkstoffe zur Verwendung im Bauwesen - Eigenschaften, Bewertung der Konformität und Kennzeichnung (Wood-based panels for use in construction—characteristics, evaluation of conformity and marking)Google Scholar
  5. DIN Deutsches Institut für Normung e. V. (2006a) ISO 14040 - Ökobilanz - Grundsätze und Rahmenbedingungen(14040)Google Scholar
  6. DIN Deutsches Institut für Normung e. V. (2006) ISO 14044 - Ökobilanz -Anforderungen und Anleitungen(14044)Google Scholar
  7. Ekvall T (1999) Key methodological issues for life cycle inventory analysis of paper recycling. J Clean Prod 7:281–294CrossRefGoogle Scholar
  8. European Commission (2011) A resource-efficient Europe. Flagship initiative under the Europe 2020 Strategy, BrusselsGoogle Scholar
  9. Finnveden G (1999) Methodological aspects of life cycle assessment of integrated solid waste management systems. Resour Conserv Recy 26(3–4):173–187CrossRefGoogle Scholar
  10. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1–21CrossRefGoogle Scholar
  11. Fleischer G, Schmidt W (1996) Functional unit for systems using natural raw materials. Int J Life Cycle Assess 1(1):23–27CrossRefGoogle Scholar
  12. Fraanje PJ (1997) Cascading of pine wood. Res Con Rec 19:21–28CrossRefGoogle Scholar
  13. Frischknecht R, Jungbluth N (2007) Overview and methodology. ecoinvent report no. 1. Swiss Center for Life Cycle Inventories, DübendorfGoogle Scholar
  14. Gärtner S, Hienz G, Keller H, Müller-Lindenlauf M (2013) Gesamtökologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich, HeidelbergGoogle Scholar
  15. Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, van Struijs J, Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition Report I: CharacterisationGoogle Scholar
  16. Guinée JB (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht; BostonGoogle Scholar
  17. Härtl F, Knoke T (2014) The influence of the oil price on timber supply. Forest Policy Econ 39:32–42CrossRefGoogle Scholar
  18. Heijungs R, Guinée JB (2007) Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Manage 27(8):997–1005CrossRefGoogle Scholar
  19. Jungmeier G, Werner F, Jarnehammar A, Hohenthal C, Richter K (2002) Allocation in LCA of wood-based products. Experiences of Cost Action E9. Part I. Methodology. Int J Life Cycle Assess 7(5):290–294CrossRefGoogle Scholar
  20. Loth R, Hanheide M (2004) Entwicklung eines mehrstufigen Anlagenverfahrens zur Verarbeitung von Restholz zur Erzeugung von hochwertigen OSB-Spänen für die Herstellung von OSB-Platten. Abschlussbericht, BielefeldGoogle Scholar
  21. Mantau U (2012) Holzrohstoffbilanz Deutschland. Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung 1987 bis 2015, HamburgGoogle Scholar
  22. Mantau U, Bilitewski B (2010) Stoffstrom-Modell- Holz 2007. Rohstoffströme und CO2-Speicherung in der Holzverwendung. Forschungsbericht für das Kuratorium für Forschung und Technik des Verbandes der Deutschen Papierfabriken e.V. (VDP), CelleGoogle Scholar
  23. Mantau U, Saal U, Prins K, Steierer F, Lindner M (2010) EUwood—real potential for changes in growth and use of EU forests. Final report, Hamburg/GermanyGoogle Scholar
  24. Nguyen TLT, Hermansen JE (2012) System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Appl Energ 89(1):254–261CrossRefGoogle Scholar
  25. Pawelzik P, Carus M, Hotchkiss J, Narayan R, Selke S, Wellisch M, Weiss M, Wicke B, Patel M (2013) Critical aspects in the life cycle assessment (LCA) of bio-based materials—reviewing methodologies and deriving recommendations. Res Con Rec 73:211–228CrossRefGoogle Scholar
  26. Rüter S, Diederichs S (2012) Ökobilanz-Basisdaten für Bauprodukte aus Holz. Arbeitsbericht aus dem Institut für Holztechnologie und. Holzbiologie, HamburgGoogle Scholar
  27. Sathre R, Gustavsson L (2006) Energy and carbon balances of wood cascade chains. Res Con Rec 47:332–355CrossRefGoogle Scholar
  28. Sathre R, O’Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Pol 13(2):104–114CrossRefGoogle Scholar
  29. Schwarzbauer P, Stern T (2010) Energy vs. material: economic impacts of a “wood-for-energy scenario” on the forest-based sector in Austria —a simulation approach. Forest Policy Econ 12(1):31–38CrossRefGoogle Scholar
  30. Sikkema R, Junginger M, McFarlane P, Faaij A (2013) The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy—a case study on available forest resources in Canada. Env Sci Pol 31:96–108CrossRefGoogle Scholar
  31. Werner F, Richter K (2007) Wooden building products in comparative LCA. A literature review. Int J Life Cycle Assess 12(7):470–479Google Scholar
  32. Werner F, Taverna R, Hofer P, Richter K (2005) Carbon pool and substitution effects of an increased use of wood in buildings in Switzerland: first estimates. Ann For Sci 62(8):889–902CrossRefGoogle Scholar
  33. Werner F, Althaus H, Richter K, Scholz RW (2007) Post-consumer waste wood in attributive product LCA. Context specific evaluation of allocation procedures in a functionalistic conception of LCA. Int J Life Cycle Assess 12(3):160–172Google Scholar
  34. Werner F, Taverna R, Hofer P, Thürig E, Kaufmann E (2010) National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Env Sci Pol 13(1):72–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Karin Höglmeier
    • 1
    Email author
  • Gabriele Weber-Blaschke
    • 1
  • Klaus Richter
    • 1
  1. 1.Chair of Wood ScienceTechnische Universität MünchenMunichGermany

Personalised recommendations