Life cycle assessment of the supply and use of water in the Segura Basin

  • Javier Uche
  • Amaya Martínez-Gracia
  • Uriel Carmona



In this paper, the combined life cycle assessment of the water supply alternatives and the water use in a water-stressed watershed in Spain (the Segura) is presented. Although it is a dry area, agriculture and tourism are very profitable sectors with high water demands. Thus, external water supply alternatives including water transfers or desalination partly balance the reduced natural water availability to cover the existing water demands.


In order to integrate both the impact of water supply alternatives and water use, the ReCiPe method was used to assess the water supply alternatives at the endpoint approach with the three specific damage categories: human health, ecosystem diversity and damage to resources availability. At the same time, the water use impact was calculated and grouped in the same categories. Firstly, one average cubic metre of water at the user's gate in the Segura Basin area was taken as the functional unit. As irrigation and drinking water constitute the principal water uses, it was considered that to separately analyse 1 m3 used for irrigation and 1 m3 destined to drinking purposes could provide interesting information. Then, these units were also considered as functional units. Then, three additional hypothetical scenarios were introduced: two of them defined by a strong variability in rainfall and the third by a sudden diminution of water transferred from a neighbouring basin.

Results and discussion

Regarding the facilities to provide 1 m3 at user's gate in the Segura Basin, results showed that the seawater desalination plants obtained the highest score for all the three considered damage categories, followed by the Tajo–Segura water transfer, the groundwater, the local surface waters and the water reuse. In relation to the water use impact, the damage to ecosystems diversity was very representative with respect to the one coming from water supply infrastructures because irrigation constituted 85 % of the total demand.


The diversification of water supply alternatives within a region considerably increases any environmental impact, primarily stemming from the additional required infrastructures, and frequently from the use of external water sources for their uses. Thus, users and policy makers should be aware of the costs that a guaranteed water supply entails. In water-scarce territories, the use of external solutions such as desalination or water transfer either increase the environmental impact due to their high energy consumption or they are limited by existing climate variability. Therefore, they cannot be considered as the definite solution, which would be a balance between renewable sources and existing demands.


ReCiPe Water LCA Water scarcity Water supply Water use 



Actuaciones para la Gestión y Utilización del Agua (Actions for the Management and Use of Water)


Direct water reuse


Ecosystem diversity


Energy input–output life cycle analysis


Ebro river water transfer




Human health


Indirect water reuse


Life cycle assessment


Life cycle energy analysis


Life cycle inventory


Life cycle impact assessment


Local surface waters


Mancomunidad de los Canales del Taibilla.


Net primary production


Overexploited ground waters




Resources availability


Renewable groundwater


Returns from irrigation


Specific energy consumption


Seawater desalination plant


Tajo–Segura water transfer


Variation factor


Water availability


Water reuse


Water reuse plant


Water stress index


Ratio of total annual freshwater withdrawals to hydrological availability


Water treatment plant


Water use


Wastewater treatment plant



The authors would like to thank the support given to this work, which was under the framework of the R+D+i project ENE2009-14515-CO-01, financed by the Spanish Ministry of Economy and Competitiveness and the English editing and advice given by Kai Whiting.

Supplementary material

11367_2013_677_MOESM1_ESM.docx (9.4 mb)
ESM 1 (DOCX 9653 kb)


  1. Aguas de la Cuenca del Segura SA (Acuasegura) (2007) Informe de viabilidad de la desaladora de Valdelentisco (in Spanish). Accessed 16 July 2013
  2. Aguas de las Cuencas Mediterráneas SA (Acuamed) (2006a) Informe de viabilidad de la actuación 2.1.e. Nueva desaladora de Aguilas/Guadalentín. Ampliación de la desaladora de Aguilas (in Spanish). Accessed 16 July 2013
  3. Aguas de las Cuencas Mediterráneas SA (Acuamed) (2006b) Informe de viabilidad de la actuación 2.1.i. Ampliación de la planta desaladora de aguas salobres de El Mojón y sus colectores (Murcia) (in Spanish). Accessed 16 July 2013
  4. Aguas de las Cuencas Mediterráneas SA (Acuamed) (2007a) Informe de viabilidad de la actuación 2.1.b. Planta desaladora para garantizar los regadíos del Trasvase Tajo-Segura (in Spanish). Accessed 16 July 2013
  5. Aguas de las Cuencas Mediterráneas SA (Acuamed) (2007b) Informe de viabilidad de la actuación 3.1.b. Desalación y obras complementarias para la Marina Baja y Alicante. Sollución Mutxamiel (in Spanish). Accessed 16 July 2013
  6. Albiac J, Hanemann M, Calatrava J, Uche J, Tapia J (2007) The rise and fall of the Ebro water transfer. Nat Resour J 46(3):727–757Google Scholar
  7. Bayart JB, Bulle C, Deschênes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. Int J Life Cycle Assess 15:439–453. doi: 10.1007/s11367-010-0172-7 CrossRefGoogle Scholar
  8. Berger M, Finkbeiner M (2010) Water footprinting: how to address water use in life cycle assessment? Sustainability 2:919–944. doi: 10.3390/su2040919 CrossRefGoogle Scholar
  9. Bonton A, Bouchard C, Barbeau B, Jedrzejak S (2012) Comparative life cycle assessment of water treatment plants. Desalination 284:42–54. doi: 10.1016/j.desal.2011.08.035 CrossRefGoogle Scholar
  10. Cerci Y, Cengel Y, Wood B, Kahraman N, Sinan Karakas E (2003) Improving the thermodynamic and economic efficiencies of desalination plants: minimum work required for desalination and case studies of four working plants. Desalination and Water Purification Research and Development Program Final Report No. 78. Accessed 25 June 2013
  11. De Gussem K, Wambecq T, Roels J, Fenu A, De Gueldre G, Van De Steene B (2011) Cost optimization and minimization of the environmental impact through life cycle analysis of the waste water treatment plant of Bree (Belgium). Water Sci Technol 63(1):164–170. doi: 10.2166/wst.2011.027 CrossRefGoogle Scholar
  12. Estevan A (2008) In “Agua y sostenibilidad: funcionalidad de las Cuencas (in Spanish)”. Observatorio de la Sostenibilidad en España (OSE), Final Report, 205 pages, 123-126. Accessed 16 July 2013
  13. European Commission Joint Research Centre and Institute for Environment and Sustainability (2010) International Reference Life Cycle Data System (ILCD) Handbook—general guide for Life Cycle Assessment—detailed guidance. doi:  10.2788/38479
  14. European Commission Joint Research Centre and Institute for Environment and Sustainability (2011) Life Cycle Data System (ILCD) Handbook—recommendations for life cycle impact assessment in the European context. doi:  10.278/33030
  15. Filion YR, MacLean HR, Karney BW (2004) Life-cycle energy analysis of a water distribution system. J Infrastruct Syst 10:120–130. doi: 10.1061/(ASCE)1076-0342(2004)10:3(119) CrossRefGoogle Scholar
  16. Godskesen B, Zambrano KC, Trautner A, Johansen NB, Thiesson L, Andersen L, Clauson-Kaas J, Neidel TL, Rygaard M, Kløverpris NH, Albrechtsen HJ (2011) Life cycle assessment of three water systems in Copenhagen—a management tool of the future. Water Sci Technol 63(3):565–572. doi: 10.2166/wst.2011.258 CrossRefGoogle Scholar
  17. Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2013) ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition (revised) Report I: Characterisation; February 2013. Accessed 9 July 2013
  18. Hanafiah M, Xenopoulos M, Pfister S, Leuven R, Huijbregts M (2011) Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction. Environ Sci Technol 45(12):5272–5278. doi: 10.1021/es1039634 CrossRefGoogle Scholar
  19. Hancock N, Black N, Cath T (2012) A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Water Res 46:1145–1154. doi: 10.1016/j.watres.2011.12.004 CrossRefGoogle Scholar
  20. Hardy L, Garrido A (2010) Análisis y evaluación de las relaciones entre el agua y la energía en España (in Spanish). Papeles del agua virtual no. 6, Fundación Marcelino Botín. Eds. Santander. Accessed 15 July 2013
  21. Hospido A, Nuñez M, Antón A (2013) Irrigation mix: how to include water sources when assessing freshwater consumption impacts associated to crops. Int J Life Cycle Assess 18:881–890. doi: 10.1007/s11367-012-0523-7 CrossRefGoogle Scholar
  22. Infoenviro (2009a) Escombreras Desalination Plant in Murcia, Spain. An exclusive infoenviro plant report. Accessed 16 July 2013
  23. Infoenviro (2009b) Valdelentisco Desalination Plant in Murcia, Spain. An exclusive infoenviro plant report. Accessed 16 July 2013
  24. Kellenberger D, Althaus HJ, Künniger T, Lehmann M (2007) Life cycle inventory of building products. Ecoinvent Report no. 7. Ecoinvent CenterGoogle Scholar
  25. Koehler A (2008) Water use in LCA: managing the planet's freshwater resources. Int J Life Cycle Ass 13:451–455. doi: 10.1007/s11367-008-0028-6 CrossRefGoogle Scholar
  26. Kounina A, Margni M, Bayart JP, Boulay AM, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, van Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Ass 18:707–721. doi: 10.1007/s11367-012-0519-3 CrossRefGoogle Scholar
  27. Lapuente E (2012) Full cost in desalination. A case study of the Segura River Basin. Desalination 300:40–45. doi: 10.1016/j.desal.2012.06.002 CrossRefGoogle Scholar
  28. Mancomunidad de los Canales del Taibilla, MCT (2011) System infrastructures (in Spanish). Accessed 01 July 2013
  29. Milá i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009a) Assessing freshwater use impacts in LCA: Part I—inventory modelling and characterization for the main impact pathways. Int J Life Cycle Ass 14:28–42. doi: 10.1007/s11367-008-0030-z CrossRefGoogle Scholar
  30. Milá i Canals L, Chapagain A, Orr S, Chenoweth J, Antón A, Clift R (2009b) Assessing freshwater use impacts in LCA, part 2: case study of broccoli production in the UK and Spain. Int J Life Cycle Ass 14:28–42. doi: 10.1007/s11367-010-0187-0 CrossRefGoogle Scholar
  31. Mortera R (2008) Desalinizadora de Escombreras (in Spanish). Retema (Revista técnica de medio ambiente) 124:50–62Google Scholar
  32. Muñoz I, Milá i Canals L, Fernández AR (2010) Life cycle assessment of water supply plans in Mediterranean Spain. J Ind Ecol 14(6):902–918. doi: 10.1111/j.1530-9290.2010.00271.x CrossRefGoogle Scholar
  33. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–3. doi: 10.1126/science.1082750 CrossRefGoogle Scholar
  34. Novotny V (2011) Water and energy link in the cities of the future-achieving net zero carbon and pollution emissions footprint. Water Sci Technol 63(1):184–90. doi: 10.2166/wst.2011.031 CrossRefGoogle Scholar
  35. Ortiz M, Raluy G, Serra L, Uche J (2007) Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination 204:121–13. doi: 10.1016/j.desal.2006.04.026 CrossRefGoogle Scholar
  36. Owens JW (2001) Water resources in life-cycle impact assessment: considerations in choosing category indicators. J Ind Ecol 5:37–54. doi: 10.1162/10881980152830123 CrossRefGoogle Scholar
  37. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104. doi: 10.1021/es802423e CrossRefGoogle Scholar
  38. Pfister S, Bayer P, Koehler A, Hellweg S (2011a) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45(13):5761–5768. doi: 10.1021/es1041755 CrossRefGoogle Scholar
  39. Pfister S, Saner D, Koehler A (2011b) The environmental relevance of freshwater consumption in global power production. Int J Life Cycle Ass 16(6):580–591. doi: 10.1007/s11367-011-0284-8 CrossRefGoogle Scholar
  40. Raluy G, Serra L, Uche J, Valero A (2004) Life cycle assessment of desalination technologies integrated with energy production systems. Desalination 167:445–458. doi: 10.1016/j.desal.2004.06.160 CrossRefGoogle Scholar
  41. Raluy G, Serra L, Uche J (2005a) Life cycle assessment of desalination technologies integrated with renewable sources. Desalination 183:597–609. doi: 10.1016/j.desal.2005.04.023 CrossRefGoogle Scholar
  42. Raluy G, Serra L, Uche J, Valero A (2005b) Life cycle assessment of water production technologies. Part 2: reverse osmosis desalination versus the Ebro river water transfer. Int J Life Cycle Ass 10(5):346–354. doi: 10.1065/lca2004.09.179.2 CrossRefGoogle Scholar
  43. Segura Basin Water Authority (2007a) Estudio general sobre la Demarcación Hidrográfica del Segura (in Spanish). Accessed 16 July 2013
  44. Segura Basin Water Authority (2007b) Infraestructuras. Embalses (in Spanish). Accessed 16 July 2013
  45. Segura Basin Water Authority (2011) Campaña de control en la red piezométrica de la Demarcación Hidrográfica del Segura (in Spanish). Accessed 16 July 2013
  46. Segura Basin Water Authority (2013a) Confederación Hidrográfica del Segura (CHS). Propuesta del proyecto del plan hidrológico de la cuenca del Segura. Memoria. Ministerio de agricultura, alimentación y medio ambiente. Gobierno de España (in Spanish). Accessed 16 July 2013
  47. Segura Basin Water Authority (2013b) Estadísticas pluviometría SAIH (in Spanish). Accessed 18 July 2013
  48. Sindicato de Regantes del Acueducto Tajo-Segura (SCRATS) (2011) Tajo-Segura aqueduct infrastructures. Accessed 16 July 2013
  49. Stokes J, Horvath A (2006) Life cycle energy assessment of alternative water supply systems. Int J Life Cycle Ass 11(5):335–343. doi: 10.1065/lca2005.06.214 CrossRefGoogle Scholar
  50. Uche J, Martínez A, Castellanos C, Subiela V (2013) Life cycle analysis of urban water cycle in two Spanish areas: inland city and island area. Desalin Water Treat 51:280–291. doi: 10.1080/19443994.2012.716634 CrossRefGoogle Scholar
  51. Vince F, Aoustin E, Bréant F, Marechal F (2008) LCA tool for the environmental evaluation of potable water production. Desalination 220(1–3):37–56. doi: 10.1016/j.desal.2007.01.021 CrossRefGoogle Scholar
  52. Zhou J, Chang V, Fane AG (2011) Environmental life cycle assessment of reverse osmosis desalination: the influence of different life cycle impact assessment methods on the characterization results. Desalination 283(1):227–236. doi: 10.1016/j.desal.2011.04.066 CrossRefGoogle Scholar
  53. Zhou J, Chang V, Fane AG (2013) An improved life cycle impact assessment (LCIA) approach for assessing aquatic eco-toxic impact of brine disposal from seawater desalination plants. Desalination 308:233–241. doi: 10.1016/j.desal.2012.07.039 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Javier Uche
    • 1
  • Amaya Martínez-Gracia
    • 1
  • Uriel Carmona
    • 2
  1. 1.Natural Resources Area, CIRCE Research InstituteUniversity of ZaragozaZaragozaSpain
  2. 2.Cinara Institute–Engineering FacultyDel Valle Cali UniversityCaliColombia

Personalised recommendations