Advertisement

The International Journal of Life Cycle Assessment

, Volume 21, Issue 9, pp 1236–1254 | Cite as

Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—part I: electricity generation

  • Karin TreyerEmail author
  • Christian Bauer
THE ECOINVENT DATABASE V3

Abstract

Purpose

Life cycle inventories (LCI) of electricity generation and supply are among the main determining factors regarding life cycle assessment (LCA) results. Therefore, consistency and representativeness of these data are crucial. The electricity sector has been updated and substantially extended for ecoinvent version 3 (v3). This article provides an overview of the electricity production datasets and insights into key aspects of these v3 inventories, highlights changes and describes new features.

Methods

Methods involved extraction of data and analysis from several publically accessible databases and statistics, as well as from the LCA literature. Depending on the power generation technology, either plant-specific or region-specific average data have been used for creating the new power generation inventories representing specific geographies. Whenever possible, the parent–child relationship was used between global and local activities. All datasets include a specific technology level in order to support marginal mixes used in the consequential version of ecoinvent. The use of parameters, variables and mathematical relations enhances transparency. The article focuses on documentation of LCI data on the unlinked unit process level and presents direct emission data of the electricity-generating activities.

Results and discussion

Datasets for electricity production in 71 geographic regions (geographies) covering 50 countries are available in ecoinvent v3. The number of geographies exceeds the number of countries due to partitioning of power generation in the USA and Canada into several regions. All important technologies representing fossil, renewable and nuclear power are modelled for all geographies. The new inventory data show significant geography-specific variations: thermal power plant efficiencies, direct air pollutant emissions as well as annual yields of photovoltaic and wind power plants will have significant impacts on cumulative inventories. In general, the power plants operating in the 18 newly implemented countries (compared to ecoinvent v2) are on a lower technology level with lower efficiencies and higher emissions. The importance of local datasets is once more highlighted.

Conclusions

Inventories for average technology-specific electricity production in all globally important economies are now available with geography-specific technology datasets. This improved coverage of power generation representing 83 % of global electricity production in 2008 will increase the quality of and reduce uncertainties in LCA studies worldwide and contribute to a more accurate estimation of environmental burdens from global production chains. Future work on LCI of electricity production should focus on updates of the fuel chain and infrastructure datasets, on including new technologies as well as on refining of the local data.

Keywords

Country-specific ecoinvent v3 Electricity Life cycle inventories Power generation technology 

Notes

Acknowledgments

The authors express their gratitude to Pablo Tirado and Pascal Lesage from CIRAIG, Canada, for supply of high quality inventory data for the individual Canadian provinces; to all the reviewers of the new inventory datasets, particularly Carl Vadenbo and Dominik Saner from ETH Zurich, Switzerland; and to the ecoinvent team for the successful collaboration for integration of the new datasets into the database.

Supplementary material

11367_2013_665_MOESM1_ESM.doc (308 kb)
ESM 1 (DOC 307 kb)

References

  1. Bauer C, Bolliger R, Tuchschmid M, Faist Emmenegger M (2007) Wasserkraft. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, CH, Final report ecoinvent No. 6-VIIIGoogle Scholar
  2. Bauer C, Dones R, Heck T, Hirschberg S (2008) Environmental assessment of current and future Swiss electricity supply options. Paper presented at the International Conference on the Physics of Reactors “Nuclear Power: A Sustainable Resource”, Interlaken, Switzerland, 14–19 September, 2008Google Scholar
  3. Bousquin J, Gambeta E, Esterman M, Rothenberg S (2012) Life cycle assessment in the print industry. J Ind Ecol 16:S195–S205CrossRefGoogle Scholar
  4. Caduff M, Huijbregts MAJ, Althaus H-J, Koehler A, Hellweg S (2012) Wind power electricity: the bigger the turbine, the greener the electricity? Environ Sci Technol 46(9):4725–4733CrossRefGoogle Scholar
  5. CONUEE (2009) Market niches for grid-connected photovoltaic Systems in Mexico. Comision Nacional para el Uso Eficiente de la Energia (Conuee)Google Scholar
  6. Corsten M, Ramirez A, Shen L, Koornneef J, Faaij A (2013) Environmental impact assessment of CCS chains—lessons learned and limitations from LCA literature. Int J Greenh Gas Con 13:59–71CrossRefGoogle Scholar
  7. Doka G (2007) Life cycle inventories of waste treatment services. Final report ecoinvent No. 13. Swiss Centre for Life Cycle Inventories, Duebendorf, SwitzerlandGoogle Scholar
  8. Dolan SL, Heath GA (2012) Life cycle greenhouse gas emissions of utility-scale wind power. J Ind Ecol 16:S136–S154CrossRefGoogle Scholar
  9. Dones R, Bauer C, Röder A (2007) Kohle. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, Final report ecoinvent No. 6-VIGoogle Scholar
  10. Dones R, Bauer C, Doka G (2009) Kernenergie. Final report ecoinvent No. 6-VII. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Duebendorf, SwitzerlandGoogle Scholar
  11. EC (2011) National Pollutant Release Inventory. Environment Canada, www.ec.gc.ca/inrp-npri/
  12. EPA (2012) eGRID 2012 Version 1.0. The Emissions & Generation Resource Integrated Database. US Environmental Protection Agency, Washington, DCGoogle Scholar
  13. EPIA (2011) Global market outlook for photovoltaics until 2015. European Photovoltaic Industry Association, Google Scholar
  14. Eurobserver (2011) Systèmes Solaires - le journal du photovoltaïque. Baromètre Photovoltaïque - Eurobserver Nr5, avril 2011Google Scholar
  15. Faist Emmenegger M, Heck T, Tuchschmid M (2007) Erdgas. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, Final report ecoinvent No. 6-VGoogle Scholar
  16. Hawkins T, Gausen O, Strømman A (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17(8):997–1104CrossRefGoogle Scholar
  17. Heinonen J, Junnila S (2011) Case study on the carbon consumption of two metropolitan cities. Int J Life Cycle Assess 16(6):569–579CrossRefGoogle Scholar
  18. Hischier R, Baudin I (2010) LCA study of a plasma television device. Int J Life Cycle Assess 15(5):428–438CrossRefGoogle Scholar
  19. Hsu DD, O'Donoughue P, Fthenakis V, Heath GA, Kim HC, Sawyer P, Choi J-K, Turney DE (2012) Life cycle greenhouse gas emissions of crystalline silicon photovoltaic electricity generation. J Ind Ecol 16:122–S135CrossRefGoogle Scholar
  20. IAEA (2009) Operating experience with nuclear power stations in member states in 2008. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  21. IEA (2006) Compared assessment of selected environmental indicators of PV electricity in OECD cities. International Energy Agency, Paris CedexGoogle Scholar
  22. IEA (2008) Analysis of PV system's values beyond energy. International Energy Agency, Paris CedexGoogle Scholar
  23. IEA, PVPS (2010) Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 2009. vol IEA-PVPS T1-19:2010. International Energy Agency, Photovoltaic Power Systems ProgrammeGoogle Scholar
  24. IEA (2012) IEA Clean Coal Centre Database on Coal Power PlantsGoogle Scholar
  25. IEA (2010) Trends in photovoltaic applications: survey report of selected IEA countries between1992 and 2009. Report IEA-PVPS T1-19:2010. International Energy Agency, Paris CedexGoogle Scholar
  26. IEA, OECD (2010) Electricity Information 2010. International Energy Agency, Paris CedexGoogle Scholar
  27. IEA, OECD (2010) Energy balances of non OECD countries 2010. International Energy Agency, Paris CedexGoogle Scholar
  28. ISO (2006a) ISO 14040. Environmental management—life cycle assessment—principles and framework. International Organisation for Standardisation (ISO), GenevaGoogle Scholar
  29. ISO (2006b) ISO 14044. Environmental management—life cycle assessment—requirements and guidelines. International Organisation for Standardisation (ISO), GenevaGoogle Scholar
  30. Itten R, Frischknecht R, Stucki M (2012) Life cycle inventories of electricity mixes and grid. ESU-services Ltd., UsterGoogle Scholar
  31. JRC (2011) Photovoltaic geographical information system—interactive maps. European Commission–Joint Research Centre (JRC)–European Solar Test Installation. http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
  32. Jungbluth N (2007) Erdöl. Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, Final report ecoinvent No. 6-IVGoogle Scholar
  33. Jungbluth N, Bauer C, Dones R, Frischknecht R (2005) Life cycle assessment for emerging technologies: case studies for photovoltaic and wind power. Int J Life Cycle Assess 10(1):24–34CrossRefGoogle Scholar
  34. Jungbluth N, Stucki M, Flury K, Frischknecht R, Buesser S (2012) Life cycle inventories of photovoltaic power production. ESU-services, Uster. retreived from: www.esu-services.ch/data/public-lci-reports
  35. Kendall A, McPherson E (2012) A life cycle greenhouse gas inventory of a tree production system. Int J Life Cycle Assess 17(4):444–452CrossRefGoogle Scholar
  36. Kim HC, Fthenakis V, Choi J-K, Turney DE (2012) Life cycle greenhouse gas emissions of thin-film photovoltaic electricity generation. J Ind Ecol 16:S110–S121CrossRefGoogle Scholar
  37. Lesage P (2012) Ecoinvent version 3 datasets for electricity production for internal use in the aluminium industry. Data from the International Aluminium Institute. CIRAIG, CanadaGoogle Scholar
  38. Liang X, Wang Z, Zhou Z, Huang Z, Zhou J, Cen K (2013) Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. J Clean Prod 39:24–31CrossRefGoogle Scholar
  39. McKinsey (2008) The economics of solar power. The McKinsey Quarterly, Energy, Resources, Materials June 2008Google Scholar
  40. Mendoza J-M, Oliver-Solà J, Gabarrell X, Josa A, Rieradevall J (2012) Life cycle assessment of granite application in sidewalks. Int J Life Cycle Assess 17(5):580–592CrossRefGoogle Scholar
  41. Milà i, Canals L, Sim S, García-Suárez T, Neuer G, Herstein K, Kerr C, Rigarlsford G, King H (2011) Estimating the greenhouse gas footprint of Knorr. Int J Life Cycle Assess 16(1):50–58CrossRefGoogle Scholar
  42. Ministry (2009) Performance Review of Thermal Power Stations 2008–09. Government of India, Ministry of Power, Central Electricity Authority, New DelhiGoogle Scholar
  43. Mohr N, Meijer A, Huijbregts M, Reijnders L (2009) Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produced with solar electricity. Int J Life Cycle Assess 14(3):225–235CrossRefGoogle Scholar
  44. Moreno Ruiz E, Weidema BP, Bauer C, Nemecek T, Vadenbo CO, Treyer K, Wernet G (2013) Documentation of changes implemented in ecoinvent Data 3.0. Ecoinvent Report 5(v3). St. Gallen, The ecoinvent CentreGoogle Scholar
  45. PAS (2011) PAS 2050:2011. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institute. ICS code: 13.030.40, ISBN 978 0 580 71382 8Google Scholar
  46. Shekar R, Venkataraman C (2002) Inventory of aerosol and sulphur dioxide emissions from India: I—fossil fuel combustion. Atmos Environ 36:677–697CrossRefGoogle Scholar
  47. Sopian K, Haris AH, Rouss D, Yusof MA (2005) Building Integrated Photovoltaic (BiPV) in Malaysia—potential, current status. Strategies for long term cost reduction. ISESCO Science and Technology Vision Volume 1—May 2005, pp 40–44Google Scholar
  48. StatCan (2009) Electric power generation, transmission and distribution 2007. Statistics Canada, Manufacturing and Energy Division. Minister of Industry. Catalogue no. 57-202-XGoogle Scholar
  49. Teehan P, Kandlikar M (2012) Sources of variation in life cycle assessments of desktop computers. J IND ECOL 16:S182–S194CrossRefGoogle Scholar
  50. TheWindPower (2011) Wind turbines and windfarms database. www.thewindpower.net
  51. Torrellas M, Antón A, López J, Baeza E, Parra J, Muñoz P, Montero J (2012) LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. Int J Life Cycle Assess 17(7):863–875CrossRefGoogle Scholar
  52. Treyer K, Bauer C (2013) Life Cycle Inventories of electricity generation and power supply in version 3 of the ecoinvent database—part II: electricity markets. Int J Life Cycle Assess (this issue)Google Scholar
  53. Volkart K, Bauer C, Boulet C (2013) Life cycle assessment of carbon capture and storage in power generation and industry in Europe. Int J Greenh Gas Con 16:91–106CrossRefGoogle Scholar
  54. von Stackelberg K (2011) Power generation and human health. In: Jerome N (ed) Encyclopedia of environmental health. Elsevier, AmsterdamGoogle Scholar
  55. Wakabayashi H (2010) Solar PV promotion in Japan. Global Warming Potential. http://www.ingcore.org/downloads/Solar-PV-Promotion-20100628.pdf
  56. Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Vadenbo CO, Wernet G (2013) Overview and methodology. Data quality guideline for the ecoinvent database version 3. St. Gallen: The ecoinvent CentreGoogle Scholar
  57. Whitaker M, Heath GA, O'Donoughue P, Vorum M (2012) Life cycle greenhouse gas emissions of coal-fired electricity generation. J Ind Ecol 16:53–S72CrossRefGoogle Scholar
  58. WWEA (2011) World Wind Energy Report. 10 th World Wind Energy Conference & Renewable Energy Exhibition Greening Energy: Converting Deserts into PowerhousesGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Energy Systems AnalysisPaul Scherrer Institut, PSIVilligenSwitzerland

Personalised recommendations