Heating systems LCA: comparison of biomass-based appliances

  • Daniele Cespi
  • Fabrizio Passarini
  • Luca Ciacci
  • Ivano Vassura
  • Valentina Castellani
  • Elena Collina
  • Andrea Piazzalunga
  • Luciano Morselli



Biomass provides an attractive solution for residential heating systems based on renewable fuels, even though biomass-based domestic heating systems are recognized as significant particulate matter emitters; thus, a life cycle assessment (LCA) approach was used in the study to compare two different appliances: a wood stove and a pellet stove, both modeled according to the best available technologies definition.


System boundaries of each scenario refer to a cradle-to-grave approach, including production, use and disposal of the heating appliance, as well as the preparation of biomass feedstock. The assessment of environmental impacts was performed assuming 1 MJ of thermal energy as the reference flow, considering the categories of particulate matter formation, human toxicity, climate change, and fossil fuel depletion, according to the ReCiPe 1.07 method. Finally, the comparison was extended to certain innovative heating systems in order to qualitatively evaluate potential improvements in residential heating performances.

Results and discussion

The results show that the wood stove reaches the highest scores in the categories of particulate matter formation and negative effects for human toxicity, as a consequence of the stove’s lower combustion efficiency, which would lead to a preference for the pellet stove. However, when climate change affecting human health and the ecosystem, and fossil depletion are considered, the choice appears more uncertain due to the energy consumption from the pelletizing step. Alternative technologies (e.g., solar panels in combination with a gas boiler) show better scores related to fine particles emission reduction, even if a worsening in other categories is observed. The results were validated by a sensitivity analysis.


The study suggests that a LCA approach can support the choice of the best domestic heating system, helping to promote policy initiatives on a sound basis and to understand which are the main key levers to act for reducing the total environmental burdens of biomass-based heating appliances.


Domestic heating Heat generation Particulate matter formation Pelletizing Residential stoves Wood biomass 



This research was carried out within the framework of “L.EN.S. (Wood-Energy-Health) project,” funded by the Italian Ministry of Research (PRIN program).


  1. Acerbi G. (2009) Dossier Pompe di calore-Progetto RES & RUE Dissemination. Accessed 7 Sept 2012
  2. AIEL (2011) La combustione del legno- fattori di emissione e quadro normativo. Accessed 7 Sept 2012
  3. AIEL (2012) Legna Cippato Pellet—Produzione—Requisiti qualitativi—compravendita. AIEL, ItalyGoogle Scholar
  4. APAT-ARPA Lombardia (2008) Stima dei consumi di legna da ardere per risaldamento ed uso domestico in Italia, (In Italian). Accessed 7 Sept 2012
  5. Ardente F, Beccali G, Cellura M, Lo Brano V (2005) Life cycle assessment of a solar thermal collector: sensitivity analysis, energy and environmental balances. Renew Energ 30:109–130CrossRefGoogle Scholar
  6. Bäfuer LS, Leckner B, Tullin C, Bernten M (2011) Particle emissions from pellets stoves and modern and old-type wood stoves. Biomass Bioenerg 35:3648–3655CrossRefGoogle Scholar
  7. Bidini G, Cotana F, Buratti C, Fantozzi F, Barbanera M (2006) Analisi del ciclo di vita del pellet da srf attraverso misure dirette dei consumi energetici. Accessed 7 Sept 2012
  8. Bonoli A (2007) Applicazione di una metodologia LCA (life cycle assessment) per una valutazione costi/benefici di carattere ambientale nell’impiego di biomasse per la produzione energetica nell’Appennino tosco emiliano. Accessed 7 Sept 2012
  9. Caserini S, Livio S, Giuliano M, Grosso M, Rigamonti L (2010) LCA of domestic and centralized biomass combustion: the case of Lombardy (Italy). Biomass Bionerg 34:474–482CrossRefGoogle Scholar
  10. CTI Energia e Ambiente, TCVVV S.p.A., FIER, CFAV, KOBA s.r.l., Università Politecnica delle Marche, VTT Energy, Regione Lombardia (2004), BIOCEN Gestione e valorizzazione delle ceneri di combustione nella filiera Legno-Energia. Accessed 7 Sept 2012
  11. Cocchi M, Capaccioli S, Vivarelli F (2009) IEA Bioenergy Task 40 Sustainable International Bioenergy Trade Country Report 2009 Italy. Accessed 7 Sept 2012
  12. Directive 2008/98/EC of the European Parliament and of the council of 19 November 2008 on waste and repealing certain Directives. OJ L 312, 22.11.2008, pp 3–30Google Scholar
  13. Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. OJ L 140, 5.6.2009, pp. 16–62Google Scholar
  14. Ecoinvent Centre (formerly Swiss Centre for Life Cycle Inventories) (2009) Ecoinvent 2.2 DatabaseGoogle Scholar
  15. EMPA (2001) Emissionen und Stofflüsse von (Rest-) Holzfeuerungen. EMPA, Dübendorf (CH) Rapporto Nr. 880’002/1*/5632. Accessed 7 Sept 2012
  16. ENEA (2009) Dossier-Usi termici delle fonti rinnovabili. Accessed 7 Sept 2012
  17. European Commission, DG TREN (2009a) Preparatory studies for eco-design requirements of EuPs(II), Lot 15- Solid fuel small combustions installations- Task 5: Base Cases. Accessed 7 Sept 2012
  18. European Commission, DG TREN (2009b) Preparatory Studies for Eco-design Requirements of EuPs(II), Lot 15- Solid fuel small combustions installations- Task 6: Technical analysis of BATs. Accessed 7 Sept 2012Google Scholar
  19. FAO (2011) State of the world’s forests 2011. Accessed 7 Sept 2012
  20. Fiedler F (2004) The state of the art of small-scale pellet-based heating systems and relevant regulations in Sweden, Austria and Germany. Renew Sust Energ Rev 8:201–21CrossRefGoogle Scholar
  21. Gmur C (2000) Pelletheizungen. Energiepraxis nr. 1Google Scholar
  22. Goedkoop M, Heijungs, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2012) ReCiPe 2008 – A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, First edition (revised). Ministry of Housing, Spatial Planning and the Environment (VROM), NetherlandGoogle Scholar
  23. Gustavsson L, Karlsson Å (2001) CO2 mitigation cost: a system perspective on the heating of detached houses with bioenergy or fossil fuels. EFI Procedings 39Google Scholar
  24. Hellrigl B (2004) Il pellet: notizie ed informazioni sulla produzione e l’impiego. Accessed in Sept 2012
  25. Heschel W, Rweyemamu L, Scheibner T, Meyer B (1999) Abatement of emissions in small-scale combustors through utilization of blended pellet fuels. Fuel Process Technol 61(3):223–42CrossRefGoogle Scholar
  26. INFC (2007) Le stime di superficie 2005—Prima parte. G. Tabacchi, F. De Natale, L. Di Cosmo, A. Floris, C. Gagliano, P. Gasparini, L. Genchi, G. Scrinzi, V. Tosi. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. MiPAF—Corpo Forestale dello Stato—Ispettorato Generale, CRA—ISAFA, Trento. Accessed 7 Sept 2012
  27. ISTAT (2008) Utilizzazioni legnose forestali per tipo di bosco e per destinazione (in metri cubi). Dettaglio per provincia. Tavole. Accessed 7 Sept 2012
  28. Istituto di Ricerche Ambiente Italia (2006) Il riciclo ecoefficiente. Potenzialità ambientali, economiche ed energetiche. Edizioni Ambiente srl, MilanGoogle Scholar
  29. Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) Rapporti Accessed 7 Sept 2012
  30. Junginger M, van Dam J, Alakangas E, Virkkunen M, Vesterinen P, Veijonen K (2010) EuBionNet3 - Solutions for biomass fuel market barriers and raw material availability—IEE/07/777/SI2.499477. Solutions to overcome barriers in bioenergy markets in Europe—D2.2. Resource, use and market analysis – VTT-R-01700-10. Available in: Accessed 7 Sept 2012
  31. Kemma R, van Elburg M, Li W, van Holsteijn R (2005) Methodology study eco-design of energy-using products, Final Report- Gas & Oil-fired CH boilers VHKGoogle Scholar
  32. Legislative Decree no. 152 of 3 April 2006. Norme in materia ambientale Gazzetta Ufficiale n. 88 del 14 Aprile 2006—suppl. ord. n. 96Google Scholar
  33. Madlener R, Koller M (2007) Economic and CO2 mitigation impacts of promoting biomass heating systems: an input–output study for Vorarlberg, Austria. Energ Policy 35:6021–6035CrossRefGoogle Scholar
  34. Nord-Larsen T, Bergstendt A, Farver O, Heding N (2011) Drying of firewood e the effect of harvesting time, tree species and shelter of stacked wood. Biomass Bioenerg 35:2993–2998CrossRefGoogle Scholar
  35. Osservatorio Nazionale sui Rifiuti, ONR (2009) Programma e Rapporto dell’Osseratorio – PRO2 Rapporto 2008, Rome, Italy. Accessed 19 March 2013
  36. Pastorello C, Dilara P (2010) Estimation of residential wood combustion in the Lombardy Region. European Commission-JRC (Joint Research Centre) . Accessed 7 Sept 2012
  37. Pauschinger T, Ménard M, Schulz M (2003) Impianti solari termici Manuale per la progettazione e costruzione. Accessed 7 Sept 2012
  38. Pré Consultant (2010) Introduction to LCA with SimaPro 7Google Scholar
  39. Probio CTI (2004) Analisi tecnico economica per una filiera di produzione di pellet da legno. Accessed 7 Sept 2012
  40. Region of Lombardy, Regional Law no. 24 of 11 December 2006Google Scholar
  41. Roedl A (2010) Production and energetic utilization of wood from short rotation coppice—a life cycle assessment. Int J Life Cycle Assess 15:567–578CrossRefGoogle Scholar
  42. Solli C, Reenaas M, Strømman AH, Hertwich EG (2009) Life cycle assessment of wood-based heating in Norway. Int J Life Cycle Assess 14:517–528CrossRefGoogle Scholar
  43. Stiller H (1999) Material intensity of advanced composite materials. Wuppertal Papers, Nr 90, February 1999, ISSN 0949-5266Google Scholar
  44. UMBERA Editore (2000) Woodpellets in Europe. UMBERA S.r.l., St. Pölten, AustriaGoogle Scholar
  45. UNI EN 14961-2:2011 Solid biofuels—Fuel specifications and classes—Part 2: wood pellets for non-industrial useGoogle Scholar
  46. UNI EN 14961-5:2011 Solid biofuels—Fuel specifications and classes—Part 5: firewood for non-industrial useGoogle Scholar
  47. Verma VK, Bram S, De Ruyck J (2009) Small scale biomass heating systems: standards, quality labelling and market driving factors—an EU outlook. Biomass Bioenerg 33:1393–1402CrossRefGoogle Scholar
  48. Vivarelli F, Ghezzi L (2009) Development and promotion of a transparent European Pellets Market. Creation of a European real-time Pellets Atlas. Accessed 7 Sept 2012
  49. Weidema BP, Wesnaes M (1996) Data quality management for life cycle inventories—an example for using data quality indicators. J Cleaner Prod 4(3–4):167–174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniele Cespi
    • 1
  • Fabrizio Passarini
    • 1
  • Luca Ciacci
    • 1
  • Ivano Vassura
    • 1
  • Valentina Castellani
    • 2
  • Elena Collina
    • 2
  • Andrea Piazzalunga
    • 2
  • Luciano Morselli
    • 1
  1. 1.Department of Industrial Chemistry and MaterialsUniversity of BolognaBolognaItaly
  2. 2.DISAT—Department of Environmetal and Territorial ScienceUniversity of Milano BicoccaMilanItaly

Personalised recommendations