Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity

  • Danielle Maia de Souza
  • Dan F. B. Flynn
  • Fabrice DeClerck
  • Ralph K. Rosenbaum
  • Henrique de Melo Lisboa
  • Thomas Koellner
GLOBAL LAND USE IMPACTS ON BIODIVERSITY AND ECOSYSTEM SERVICES IN LCA

Abstract

Purpose

The focus of land use modeling in life cycle impact assessment has been mainly on taxonomic measures of biodiversity, namely species richness (SR). However, increasing availability of trait data for species has led to the use of functional diversity (FD) as a promising metric to reflect the distinctiveness of species; this paper proposes the use of an FD index to calculate characterization factors (CFs) for land use impacts. Furthermore, we compare the results of the CFs to current practice and assess the increase in complexity introduced by the use of the new indicator.

Methods

The model proposed is based on data compiled by previous regional meta-analysis on SR and FD, in different land use types in the Americas. The taxonomic groups included were mammals, birds, and plants. Within each study, calculated values for FD for different land use types were compared with the natural or close-to-natural state, taken as the reference situation. FD values among different land uses were standardized, and CFs were calculated. The final results were then analyzed and compared by analysis of variance and post hoc tests. A sensitivity analysis was also applied to verify the influence on the choice of the reference state.

Results and discussion

The results show that significant differences exist between CFs for SR and FD metrics. Across all taxa, CFs differ significantly between land use types. The results support the use of CF for FD, as a complement to current practice. Distinct CFs should be applied for at least six groups of land use categories. The choice of reference land use type did not significantly alter the results but can be a source of variability. A sensitivity analysis evaluating the impact of alternate land use types as reference types found only few significant changes on the results.

Conclusions and recommendations

Given the results, we believe the use of CFs based on FD can help on the establishment of possible links between species loss and key ecosystem functions, i.e., on the association between the midpoint indicator (e.g., biodiversity loss) and the damage caused to ecosystem quality, in terms of functions lost. Basing CFs on FD is not without challenges. Such indices are data hungry (requiring species composition and traits) require more complex calculations than current common practice, including decisions on the choice of a method to calculate FD and the selection of traits.

Keywords

Biodiversity indicator Functional diversity Global characterization factors Land use LCIA Regionalization 

Notes

Acknowledgments

We would like to thank the LC Impact (Life Cycle Impact Assessment Methods for Improved Sustainability Characterization of Technologies, Grant Agreement N.243827, funded by the European Commission under the 7th Framework Programme) and SoilTrEC (Soil Transformations in European Catchments, Grant Agreement N. 244118, funded by the European Commission under the 7th Framework Programme) Projects for the financial support provided for the development of this research. Further, we are also thankful to M. Gogol-Prokurat, T. Nogeire, N. Molinari, B.T. Richers, B.B. Lin, N. Simpson, and M.M. Mayfield, who through Fabrice DeClerck and Dan Flynn have made part of the metadata available for this study.

Supplementary material

11367_2013_578_MOESM1_ESM.doc (460 kb)
ESM 1 (DOC 459 kb)

References

  1. Achten WMJ, Vandenbempt P, Lemaître P, Mathijs E, Muys B (2008) Proposing a life cycle land use impact calculation methodology, 6th International Conference on LCA in the Agri-Food Sector, ZurichGoogle Scholar
  2. Best LB, Freemark KE, Dinsmore JJ, Camp M (1995) A review and synthesis of habitat use by breeding birds in agricultural landscapes of Iowa. Am Midl Nat 134(1):1–29CrossRefGoogle Scholar
  3. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242CrossRefGoogle Scholar
  4. Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1172–1178CrossRefGoogle Scholar
  5. Curran M, de Baan L, Schryver AMD, Zelm RV, Hellweg S, Koellner T et al (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45:70–79CrossRefGoogle Scholar
  6. Daily GC, Ehrlich PR, Sánchez-Azofeifa GA (2001) Countryside biogeography: use of human-dominated habitats by the Avifauna of Southern Costa Rica. Ecol Appl 11(1):1–13CrossRefGoogle Scholar
  7. De Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess. doi: 10.1007/s11367-012-0412-0 (this issue)Google Scholar
  8. Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655CrossRefGoogle Scholar
  9. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerk F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12(1):22–33CrossRefGoogle Scholar
  10. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–383CrossRefGoogle Scholar
  11. Harrington R, Anton C, Dawson TP, Fd B, Feld CK, Haslett JR, Kluvánkova-Oravská T, Kontogianni A, Lavorel S, Luck GW, Rounsevell MDA, Samways MJ, Settele J, Skourtos M, Spangenberg JH, Vandewalle M, Zobel M, Harrison PA (2010) Ecosystem services and biodiversity conservation: concepts and glossary. Biodivers Conserv 19(10):2773–2790CrossRefGoogle Scholar
  12. Hooper DU, Solan M, Symstad A, Diaz S, Gessner MO, Buchmann N, Degrange V, Grime P, Hulot F, Mermillod-Blondin F, Roy J, Spehn E, van Peer L (2002) Species diversity, functional diversity, and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, London, pp 195–208Google Scholar
  13. Husband TP, Abedon DH, Donelan E, Paton P (2009) Do coffee dominated landscapes support mammal biodiversity? In: World Agroforestry Centre (Hrsg.), 2nd World Congress of Agroforestry, Agroforestry - The Future of Global Land Use. Book of Abstracts, 2nd World Congress of Agroforestry. World Agroforestry Centre, Nairobi, KenyaGoogle Scholar
  14. IUCN (2001) IUCN Red List Categories and Criteria. Version 3.1. IUCN Species Survival Commission, GlandGoogle Scholar
  15. Koellner T (2003) Land Use in Product Life Cycles and Ecosystem Quality. Peter Lang, Frankfurt am Main, 271 ppGoogle Scholar
  16. Koellner T, de Baan L, Brandao M, Milà i Canals L, Civit B, Goedkoop M, Margni M, Weidema BP, Wittstock B, Mueller-Wenk R (2013) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess. doi: 10.1007/s11367-012-0392-0 Google Scholar
  17. Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Part 1: An analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12:16–23CrossRefGoogle Scholar
  18. MA (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DCGoogle Scholar
  19. Mas AH, Dietsch TV (2004) Linking shade coffee certification to biodiversity conservation: butterflies and birds in Chiapas, Mexico. Ecol Appl 14(3):642–654CrossRefGoogle Scholar
  20. Mason NWH, MacGillivray K, Steel JB, Wilson JB (2003) An index of functional diversity. J Veg Sci 14(4):571–578CrossRefGoogle Scholar
  21. Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111(1):112–118CrossRefGoogle Scholar
  22. Mayfield MM, Ackerly D, Daily GC (2006) The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. J Ecol 94(3):522–536CrossRefGoogle Scholar
  23. Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24(4):867–876CrossRefGoogle Scholar
  24. Mueller-Wenk R (1998) Land use the main threat to species: How to include land use in LCA. 64. Universität St. Gallen, St. GallenGoogle Scholar
  25. Petchey OL, Gaston KJ (2002a) Extinction and the loss of functional diversity. Proc R Soc Lond B 269:1721–1727CrossRefGoogle Scholar
  26. Petchey OL, Gaston KJ (2002b) Functional diversity (FD), species richness and community composition. Ecol Lett 5(3):402–411CrossRefGoogle Scholar
  27. Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85(3):847–857CrossRefGoogle Scholar
  28. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758CrossRefGoogle Scholar
  29. Petchey OL, O’Gorman EJ, Flynn DFB (2009) A functional guide to functional diversity measures. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford University Press, Oxford, p 384Google Scholar
  30. Podani J, Schmera D (2006) On dendrogram based measures of functional diversity. Oikos 115(1):179–185CrossRefGoogle Scholar
  31. Sánchez-Merlos D, Harvey CA, Grijalva A, Medina A, Vilchez S, Hernandez B (2005a) Diversidad, composicion y estructura de la vegetacion en un agropaisaje ganadero en Matiguas, Nicaragua. Rev Biol Trop 53(3–4):387–414Google Scholar
  32. Sánchez-Merlos D, Harvey CA, Grijalva A, Medina A, Vilchez S, Hernandez B (2005b) Caracterización de la diversidad, densidad y estructura de la vegetación en un paisaje fragmentado de bosque seco en Rivas, Nicaragua. Rev Rec Nat Ambiente 45:91–104Google Scholar
  33. Schmidt JH (2008) Development of LCIA characterization factors for land use impacts on biodiversity. J Cleaner Prod 16(18):1929–42CrossRefGoogle Scholar
  34. Souza DM (2010) Proposta de um modelo de caracterização de impactos do uso da terra, segundo indicadores de biodiversidade, em AICV: cálculo de fatores de caracterização para ecorregiões brasileiras. Ph.D. thesis, Universidade Federal de Santa Catarina, Florianopolis, 309 ppGoogle Scholar
  35. StatSoft Inc (2009) Statistica: data analysis software system. StatSoft. Inc, TulsaGoogle Scholar
  36. Sullivan TP, Sullivan DS (2006) Plant and small mammal diversity in orchard versus non-crop habitats. Agr Ecosyst Environ 116(3–4):235–243CrossRefGoogle Scholar
  37. Suzan G, Armien A, Mills JN, Marce E, Ceballos G, Avila M, Salazar-Bravo J, Ruedas L, Armien B, Yates TL (2008) Epidemiological considerations of rodent community composition in fragmented landscapes in panama. J Mammalogy 89(3):684–690CrossRefGoogle Scholar
  38. Tilman D (2001) Functional diversity. In: Levin SA (ed) Encyclopedia of biodiversity. Academic, New JerseyGoogle Scholar
  39. Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew. Pflanzensoziol (13):5–42Google Scholar
  40. Vandewalle M, de Bello F, Berg M, Bolger T, Dolédec S, Dubs F, Feld C, Harrington R, Harrison P, Lavorel S, da Silva P, Moretti M, Niemelä J, Santos P, Sattler T, Sousa J, Sykes M, Vanbergen A, Woodcock B (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19(10):2921–2947CrossRefGoogle Scholar
  41. Weidema B, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. Final report of the EURENVIRON-LCAGAPS sub-project on land use, Department of Manufacturing Engineering and Management, Technical University of Denmark, LyngbyGoogle Scholar
  42. Zerbe S (1998) Potential natural vegetation: validity and applicability in landscape planning and nature conservation. Appl Veg Sci 1:165–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Danielle Maia de Souza
    • 1
    • 2
  • Dan F. B. Flynn
    • 3
  • Fabrice DeClerck
    • 4
  • Ralph K. Rosenbaum
    • 5
  • Henrique de Melo Lisboa
    • 6
  • Thomas Koellner
    • 1
  1. 1.Faculty of Biology, Chemistry and Geosciences, Professorship of Ecological ServicesUniversity of BayreuthBayreuthGermany
  2. 2.Joint Research CentreEuropean CommissionIspraItaly
  3. 3.Institute of Evolutionary Biology and Environmental ScienceUniversity of ZurichZurichSwitzerland
  4. 4.Bioversity International, Parc Scientifique Agropolis IIMontpellier Cedex 5France
  5. 5.Section for Quantitative Sustainability Assessment (QSA), Department of Management EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  6. 6.Departamento de Engenharia Sanitária e Ambiental, Centro TecnológicoUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations