Land use impacts on freshwater regulation, erosion regulation, and water purification: a spatial approach for a global scale level

  • Rosie SaadEmail author
  • Thomas Koellner
  • Manuele Margni



Rarely considered in environmental assessment methods, potential land use impacts on a series of ecosystem services must be accounted for in widely used decision-making tools such as life cycle assessment (LCA). The main goal of this study is to provide an operational life cycle impact assessment characterization method that addresses land use impacts at a global scale by developing spatially differentiated characterization factors (CFs) and assessing the extent of their spatial variability using different regionalization levels.


The proposed method follows the recommendations of previous work and falls within the framework and principles for land use impact assessment established by the United Nations Environment Programme/Society of Environmental Toxicology and Chemistry Life Cycle Initiative. Based on the spatial approach suggested by Saad et al. (Int J Life Cycle Assess 16: 198–211, 2011), the intended impact pathways that are modeled pertain to impacts on ecosystem services damage potential and focus on three major ecosystem services: (1) erosion regulation potential, (2) freshwater regulation potential, and (3) water purification potential. Spatially-differentiated CFs were calculated for each biogeographic region of all three regionalization scale (Holdridge life regions, Holdridge life zones, and terrestrial biomes) along with a nonspatial world average level. In addition, seven land use types were assessed considering both land occupation and land transformation interventions.

Results and discussion

A comprehensive analysis of the results indicates that, when compared to all resolution schemes, the world generic averaged CF can deviate for various ecosystem types. In the case of groundwater recharge potential impacts, this range varied up to factors of 7, 4.7, and 3 when using the Holdridge life zones, the Holdridge regions, and the terrestrial biomes regionalization levels, respectively. This validates the importance of introducing a regionalized assessment and highlights how a finer scale increases the level of detail and consequently the discriminating power across several biogeographic regions, which could not have been captured using a coarser scale. In practice, the implementation of such regionalized CFs suggests that an LCA practitioner must identify the ecosystem in which land occupation or transformation activities occur in addition to the traditional inventory data required—namely, the land use activity and the inventory flow.


The variability of CFs across all three regionalization levels provides an indication of the uncertainty linked to nonspatial CFs. Among other assumptions and value choices made throughout the study, the use of ecological borders over political boundaries was deemed more relevant to the interpretation of environmental issues related to specific functional ecosystem behaviors.


Characterization factors Ecosystem quality Ecosystem services Global scale Land use Life cycle impact assessment (LCIA) Regionalization Spatial differentiation 



The International Chair in Life Cycle Assessment (a research unit of the CIRAIG) would like to acknowledge the financial support of the industrial partners: Arcelor-Mittal, Bell Canada, Cascades, Eco Entreprises Québec/Recyc-Québec, Groupe EDF/GDF-SUEZ, Hydro-Québec, Johnson & Johnson, Mouvement des caisses Desjardins, Rio Tinto Alcan, RONA, SAQ, Total, Veolia Environnement and Agriculture and Agri-Food Canada, Agricultural Bioproducts Innovation Program.

Supplementary material

11367_2013_577_MOESM1_ESM.doc (1.3 mb)
ESM 1 DOC 1,380 kb


  1. Baitz M (2002) Bedeutung der funktionsbasierten Charakterisierung von Flächeninanspruchnahmen in ndustriellen Prozesskettenanalysen. Life cycle engineering. University of Stuttgart, Stuttgart, p 172, PhDGoogle Scholar
  2. Basset-Mens C, Ledgard S, Boyes M (2009) Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol Econ 68(6):1615–1625CrossRefGoogle Scholar
  3. Baumann H, Ekvall T, Svensson G, Rydberg T, Tillman A-M (1992) Aggregation and operative units in Life-Cycle Assessment. In: Proceedings of the Society of Environmental Toxicology and Chemistry (SETAC) Europe, BrusselsGoogle Scholar
  4. Bayart JB (2008) Quantification des impacts reliés à l’utilisation de la ressource eau en analyse de cycle de vie: définition d’un cadre d’étude et dévelopement de facteurs de caractérisation Chemical Engineering. Montréal, Ecole Polytechnique de Montréal. Maîtrise és Sciences AppliquéesGoogle Scholar
  5. Beck T, Bos U, Wittstock B, Baitz M, Fischer M, Sedlbauer K (2010) LANCA—Land Use Indicator Value Calculation in Life Cycle Assessment. Fraunhofer, Stuttgart, Germany, Google Scholar
  6. Berlin J (2002) Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int Dairy J 12(11):939–953CrossRefGoogle Scholar
  7. Blonk H, Lindeijer E, Broers J (1997) Towards a methodology for taking physical degredation of ecosystems into account in LCA. Int J Life Cycle Assess 2(2):91–98CrossRefGoogle Scholar
  8. Cederberg C, Mattsson B (2000) Life cycle assessment of milk production—a comparison of conventional and organic farming. J Clean Prod 8(1):49–60CrossRefGoogle Scholar
  9. Daily GC (1997) Introduction: what are ecosystem services? In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Islan, Washington, DC, pp 1–10Google Scholar
  10. de Groot RS (1992) Functions of nature: evaluation of nature in environmental planning, management and decision making. Wolters-Noordhoff, Amsterdam, NetherlandsGoogle Scholar
  11. Erickson TO, Stefan HG (2009) Natural groundwater recharge response to urbanization: Vermillion River Watershed, Minnesota. J Water Res Plan Manage 135(6):512–520CrossRefGoogle Scholar
  12. ESRI (2012) Desktop GIS. Environmental Systems Research InstituteGoogle Scholar
  13. FAO, IIASA, ISRIC, ISSCAS, JRC (2008) Harmonized World Soil Database (version 1.1). Rome, Italy and IIASA, Laxenburg, Austria, FAOGoogle Scholar
  14. Farris E, Filibeck G, Marignani M, Rosati L (2010) The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión & Fernández (2009). J Biogeogr 37(11):2211–2213CrossRefGoogle Scholar
  15. Fava J, Consoli F, Denison R, Dickson K, Mohin T, Vigon B (1993) A conceptual framework for life-cycle impact assessment. Pensacola, FLGoogle Scholar
  16. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574CrossRefGoogle Scholar
  17. Haxeltine A, Prentice CI (1996) BIOME3: an equilibrium biosphere model based on ecophysiological constraints, resource vailability and competition among plant functional types. Global Biogeochem Cycles 10(4):693–709CrossRefGoogle Scholar
  18. Heijungs R (1992) Environmental life cycle assessment of products: guide and backgrounds (part 1). Centrum voor Milieukunde Leiden, LeidenGoogle Scholar
  19. Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105(2727):367–368CrossRefGoogle Scholar
  20. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and arctic ecosystems II: modeling, paleodata-model comparisons, and future projections. J Geophys Res 108(D19)Google Scholar
  21. Knisel WG (1980) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems. US Dept Agriculture, Conservation Research Report no. 26Google Scholar
  22. Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Part 1: an analytical framework for pure land occupation and land use change. Int J Life Cycle Assess 12(1):16–23CrossRefGoogle Scholar
  23. Koellner T, Scholz R (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterization factors for local species diversity in Central Europe. Int J Life Cycle Assess 13(1):32–48Google Scholar
  24. Koellner T, de Baan L, Beck T, Brandao M, Civit B, Goedkoop M, Margni M, Milà i Canals L, Müller-Wenk R, Weidema B, Wittstock B (2012) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess. doi: 10.1007/s11367-012-0392-0 Google Scholar
  25. Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, Milà i Canals L, Saad R, de Souza DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impacts on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess (this issue)Google Scholar
  26. Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R, Koehler A, Milà i Canals L, Motoshita M, Núñez M, Peters G, Pfister S, Ridoutt B, Zelm R, Verones F, Humbert S (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18(3):707–721CrossRefGoogle Scholar
  27. Laflen JM, Elliot WJ, Flanagan DC, Meyer CR, Nearing MA (1997) WEPP-Predicting water erosion using a process-based model. J Soil Water Conserv 52(2):96–102Google Scholar
  28. Lee J, Pak G, Yoo C, Kim S, Yoon J (2010) Effects of land use change and water reuse options on urban water cycle. J Environ Sci 22(6):923–928CrossRefGoogle Scholar
  29. Lindeijer E (2000) Review of land use impact methodologies. J Clean Prod 8:273–281CrossRefGoogle Scholar
  30. Lindeijer E, van Kampen M, Fraanje PJ, van Dobben HF, Nabuurs GJ, Schouwenberg EPAG, Prins AH, Dankers N, Leopold MF (1998) Biodiversity and life support indicators for land use impacts in LCA, Delft: Rijkswaterstaat, Dienst Weg- en WaterbouwkundeGoogle Scholar
  31. Lindeijer E, Müller-Wenk R, Steen B et al (2002) Impact assessment of resources and land use. In: Udo de Haes H, Finnveden G, Goedkoopet M (eds) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 11–64Google Scholar
  32. Loidi J, del Arco M, Pérez de Paz PL, Asensi A, Díez Garretas B, Costa M, Díaz González T, Fernández-González F, Izco J, Penas Á, Rivas-Martínez S, Sánchez-Mata D (2010) Understanding properly the ‘potential natural vegetation’ concept. J Biogeogr 37(11):2209–2211CrossRefGoogle Scholar
  33. Maes WH, Heuvelmans G, Muys B (2009) Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial aquatic system. Environ Sci Technol 43(19):7324–7330CrossRefGoogle Scholar
  34. MEA (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC, USAGoogle Scholar
  35. Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15CrossRefGoogle Scholar
  36. Milà i Canals L, Romanya J, Cowell SJ (2007b) Method for assessing impacts on life support functions (LSF) related to the use of “fertile land” in life cycle assessment (LCA). J Clean Prod 15(15):1426–1440CrossRefGoogle Scholar
  37. Müller-Wenk R (1998) Land use—the main threat to species. How to include land use in LCA. University of St. Gallen, Switzerland, p 46Google Scholar
  38. Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172–182CrossRefGoogle Scholar
  39. Mutel CL, Pfister S, Hellweg S (2011) GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation. Environ Sci Technol 46(2):1096–1103CrossRefGoogle Scholar
  40. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic ma2er. In: Page AL et al (eds) Methods of soil analysis, Part 2, 2nd ed. Agronomy 9:961–1010. Am Soc of Agron, Inc. Madison, WIGoogle Scholar
  41. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw M (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11CrossRefGoogle Scholar
  42. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51(11):933–938CrossRefGoogle Scholar
  43. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104CrossRefGoogle Scholar
  44. Pfister S, Curran M, Koehler A, Hellweg S (2010) Trade-offs between land and water use: regionalized impacts of energy crops. In: Proceedings of the7th International Conference on LCA in the Agri-Food Sector, Bari, ItalyGoogle Scholar
  45. Pfister S, Bayer P, Koehler A, Hellweg S (2011) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45(13):5761–5768CrossRefGoogle Scholar
  46. Pintér L, Zahedi K, Cressman D (2000) Renforcement des capacités d’intégration de l’évaluation du milieu et des rapports sur l’état de l’environnement. IIDD pour le PNUE, Winnipeg, CanadaGoogle Scholar
  47. Ricklefs RE, Miller GL (2005) Climat, Topographie et diversité de la Nature. In: Université DB (ed) Ecologie. De Boek & Larcier, Paris, France, pp 138–167Google Scholar
  48. Rost S, Gerten D, Heyder U (2008) Human alterations of the terrestrial water cycle through land management. Adv Geosci 18:43–50CrossRefGoogle Scholar
  49. Roy P, Nei D, Orikasa T, Xu Q, Okadome H, Nakamura N, Shiina T (2009) A review of life cycle assessment (LCA) on some food products. J Food Eng 90(1):1–10CrossRefGoogle Scholar
  50. Roy P, Deschenes L, Margni M (2012) Life cycle impact assessment of terrestrial acidification: modeling spatially explicit soil sensitivity at the global scale. Environ Sci Technol 46(15):8270–8278CrossRefGoogle Scholar
  51. Saad R, Margni M, Koellner T, Wittstock B, Deschênes L (2011) Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess 16(3):198–211CrossRefGoogle Scholar
  52. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11:1577–1593CrossRefGoogle Scholar
  53. Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929–1942CrossRefGoogle Scholar
  54. Sedlbauer K, Braune A, Humbert S, Margni M, Schuller O, Fischer M (2007) Spatial differentiation in LCA—moving forward to more operational sustainability. Technikfolgenabschätzung. Theorie und Praxis 3(16):24–31Google Scholar
  55. Stone R, Myslik J (2007) Assessing the potential for ground water contamination on your farm. Ministry of Agriculture Food and Rural Affairs. Queen’s Printer for Ontario, OntarioGoogle Scholar
  56. Tallis H, Polasky S (2009) Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Ann New York Acad Sci 1162:265–283CrossRefGoogle Scholar
  57. Thomassen M, Dalgaard R, Heijungs R, de Boer I (2008) Attributional and consequential LCA of milk production. Int J Life Cycle Assess 13(4):339–349CrossRefGoogle Scholar
  58. Tolba MK, El Kholy OA, El-Hinnawi E, Holdgate MW, McMichael DF (1992) The world environment 1972–1992: two decades of challanges. Chapman & Hall, London, UKGoogle Scholar
  59. U.S. Geological Survey and Earth Resources Observation and Science (EROS) HYDRO1k elevation derivative database. GTOPO30. U. S. G. Survey. Sioux FallsGoogle Scholar
  60. Udo de Haes H, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer E, Müller-Wenk R, Olsen SI, Pennington D, Potting J, Steen B (2002) Life-cycle impact assessment: striving towards best practice. Society of Environmental Toxicology and Chemistry (SETAC), PensacolaGoogle Scholar
  61. Van der Voet E (2001) Land use in LCA. CML-SSP Working Paper, Centre of Environmental Science. Leiden University, Leiden, The NetherlandsGoogle Scholar
  62. van Dobben HF, Schouwenberg EPAG, Nabuurs GJ, Prins AH (1998) Biodiversity and productivity parameters as a basis for evaluating land use changes in LCA—Annex 1. In: Lindeijer E, van Kampen M, Fraanje PJ, van Dobben HF, Nabuurs GJ, Schouwenberg EPAG, Prins AH, Dankers N, Leopold MF (1998) Biodiversity and life support indicators for land use impacts in LCA, Delft: Rijkswaterstaat, Dienst Weg en Waterbouwkunde (publication series raw materials 1998/07)Google Scholar
  63. Westhoff V, Van der Maarel E (1973) The Braun–Blanquet approach. In: Whittaker RH (ed) Ordination and classification of communities, Handbook of Vegetation Science. Junk, The Hague, The Netherlands, pp 617–726CrossRefGoogle Scholar
  64. Williams JR (1990) The erosion–productivity impact calculator (EPIC) model: a case history. Philos T Roy Soc B 329(1255):421–428CrossRefGoogle Scholar
  65. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. USDA/Science and Education Administration, US. Govt. Printing Office, Washington, DCGoogle Scholar
  66. Zhang Y-K, Schilling KE (2006) Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: a field observation and analysis. J Hydrol 319:328–338CrossRefGoogle Scholar
  67. Zhang Y, Baral A, Bakshi BR (2010a) Accounting for ecosystem services in life cycle assessment, part II: toward an ecologically based LCA. Environ Sci Technol 44(7):2624–2631CrossRefGoogle Scholar
  68. Zhang Y, Singh S, Bakshi BR (2010b) Accounting for ecosystem services in life cycle assessment, part I: a critical review. Environ Sci Technol 44(7):2232–2242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CIRAIG, Chemical Engineering DepartmentÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Faculty of Biology, Chemistry and Geosciences, Professorship of Ecological Services PESUniversity of BayreuthBayreuthGermany

Personalised recommendations