Advertisement

Exploring variability in methods and data sensitivity in carbon footprints of feed ingredients

  • Corina E. van Middelaar
  • Christel Cederberg
  • Theun V. Vellinga
  • Hayo M. G. van der Werf
  • Imke J. M. de Boer
LCA FOR AGRICULTURE

Abstract

Purpose

Production of feed is an important contributor to life cycle greenhouse gas emissions, or carbon footprints (CFPs), of livestock products. Consequences of methodological choices and data sensitivity on CFPs of feed ingredients were explored to improve comparison and interpretation of CFP studies. Methods and data for emissions from cultivation and processing, land use (LU), and land use change (LUC) were analyzed.

Method

For six ingredients (maize, wheat, palm kernel expeller, rapeseed meal, soybean meal, and beet pulp), CFPs resulting from a single change in methods and data were compared with a reference CFP, i.e., based on IPCC Tier 1 methods, and data from literature.

Results and discussion

Results show that using more detailed methods to compute N2O emissions from cultivation hardly affected reference CFPs, except for methods to determine \( \mathrm{NO}_3^{-} \) leaching (contributing to indirect N2O emissions) in which the influence is about −7 to +12 %. Overall, CFPs appeared most sensitive to changes in crop yield and applied synthetic fertilizer N. The inclusion of LULUC emissions can change CFPs considerably, i.e., up to 877 %. The level of LUC emissions per feed ingredient highly depends on the method chosen, as well as on assumptions on area of LUC, C stock levels (mainly aboveground C and soil C), and amortization period.

Conclusions

We concluded that variability in methods and data can significantly affect CFPs of feed ingredients and hence CFPs of livestock products. Transparency in methods and data is therefore required. For harmonization, focus should be on methods to calculate \( \mathrm{NO}_3^{-} \) leaching and emissions from LULUC. It is important to consider LUC in CFP studies of food, feed, and bioenergy products.

Keywords

Carbon footprint Feed ingredients Feed production Inventory data Livestock products Methods 

Supplementary material

11367_2012_521_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30.6 kb)

References

  1. Audsley E, Brander M, Chatterton J, Murphy-Bokern D, Webster C, Williams A (2009) How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope to reduce them by 2050. WWF-UKGoogle Scholar
  2. Barker T, Bashmakov I, Bernstein L, Bogner JE, Bosch PR, Dave R, Davidson OR, Fisher BS, Gupta S, Halsnæs K, Heij GJ, Kahn Ribeiro S, Kobayashi S, Levine MD, Martino DL, Masera O, Metz B, Meyer LA, Nabuurs GJ, Najam A, Nakicenovic N, Rogner HH, Roy J, Sathaye J, Schock R, Shukla P, Sims REH, Smith P, Tirpak DA, Urge-Vorsatz D, Zhou D (2007) Technical summary. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  3. Basset-Mens C, Van der Werf HMG (2005) Scenario-based environmental assessment of farming systems: the case of pig production in France. Agric Ecosyst Environ 105:127–144CrossRefGoogle Scholar
  4. Basset-Mens C, van der Werf HMG, Robin P, Morvan T, Hassouna M, Paillat JM, Vertès F (2007) Methods and data for the environmental inventory of contrasting pig production systems. J Cleaner Prod 15:1395–1405CrossRefGoogle Scholar
  5. Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM (2011) Mitigation of greenhouse gas emissions from beef production in western Canada—evaluation using farm-based life cycle assessment. Anim Feed Sci Technol 166–167:663–677CrossRefGoogle Scholar
  6. Casey J, Holden NM (2005) Analysis of greenhouse gas emissions from the average Irish milk production system. Agric Syst 86:97–114CrossRefGoogle Scholar
  7. Cederberg C, Persson MU, Neovius K, Molander S, Clift R (2011) Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ Sci Technol 45:1773–1779CrossRefGoogle Scholar
  8. De Boer IJM, Cederberg C, Eady S, Gollnow S, Kristensen T, Macleod M, Meul M, Nemecek T, Phong LT, Thoma G, van der Werf HMG, Williams AG, Zonderland-Thomassen MA (2011) Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment. Curr Opin Environ Sustainability 3:423–431CrossRefGoogle Scholar
  9. De Vries M, De Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11CrossRefGoogle Scholar
  10. Dekker SEM, De Boer IJM, Vermeij I, Aarnink AJA, Koerkamp PWGG (2011) Ecological and economic evaluation of Dutch egg production systems. Livest Sci 139:109–121CrossRefGoogle Scholar
  11. Duxbury JM (1994) The significance of agricultural sources of greenhouse gases. Fert Res 38:151–163CrossRefGoogle Scholar
  12. Ecoinvent (2007) Ecoinvent data v2.0 final reports Ecoinvent 2007. Swiss Centre for Life Cycle Inventories, DuebendorfGoogle Scholar
  13. Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, McBride BW, France J (2008) Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J Agric Sci 146:213–233CrossRefGoogle Scholar
  14. FAOSTAT (2010) FAO statistical databases: agriculture, fisheries, forestry, nutrition. crop statistics. FAO—Food and Agriculture Organization of the United Nations (FAO) RomeGoogle Scholar
  15. Fearnside PM (1997) Greenhouse gases from deforestation of Brazilian Amazonia: net committed emissions. Clim Chang 35:321–360CrossRefGoogle Scholar
  16. Flysjö A, Cederberg C, Henriksson M, Ledgard S (2011a) How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden. Int J Life Cycle Assess 16:420–430CrossRefGoogle Scholar
  17. Flysjö A, Henriksson M, Cederberg C, Ledgard S, Englund JE (2011b) The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agric Syst 104:459–469CrossRefGoogle Scholar
  18. Flysjö A, Cederberg C, Henriksson M, Ledgard S (2012) The interaction between milk and beef production and emissions from land use change—critical considerations in life cycle assessment and carbon footprint studies of milk. J Cleaner Prod 28:134–142CrossRefGoogle Scholar
  19. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, De Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, van der Ven BL, Weidema BP (eds) (2002) Handbook on life cycle assessment; operational guide to the ISO standards. Institute for Environmental Sciences, Leiden University, LeidenGoogle Scholar
  20. Haas G, Wetterich F, Köpke U (2001) Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric Ecosyst Environ 83:43–53CrossRefGoogle Scholar
  21. Heijungs R, Huijbregts MAJ (2004) A review of approaches to treat uncertainty in LCA. In: Pahl-Wostl C, Schmidt S, Rizzoli AE, Jakeman AJ (eds) Complexity and integrated resources management. Transactions of the 2nd biennial meeting of the international environmental modelling and software SPi Globalociety, Volume 1: 332–339. iEMSs (ISBN 88-900787-1-5), Osnabrück. 2004, 1533 ppGoogle Scholar
  22. Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Part I: a general framework for the analysis of uncertainty and variability in life cycle assessment. Int J Life Cycle Assess 3:273–280CrossRefGoogle Scholar
  23. IPCC (Intergovernmental Panel on Climate Change) (2006) In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land use. Prepared by the National Greenhouse Gas Inventories Program. IGES, JapanGoogle Scholar
  24. IPCC (Intergovernmental Panel on Climate Change) (2007) In: Pachauri RK, Reisinger A (eds) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, GenevaCrossRefGoogle Scholar
  25. ISO 14043 (2000) Environmental management—life cycle assessment: life cycle interpretation. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  26. Jungbluth N, Chudacoff M, Dauriat A, Dinkerl F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Schleiss K, Spielmann M, Stettler C, Sutter J (2007) Life cycle inventories of bioenergy. Ecoinvent report no. 17. Swiss Centre for Life Cycle Invenotries, DuebendorfGoogle Scholar
  27. Karlsson S, Rodhe L (2002) Översyn av Statistiska Centralbyråns beräkning av ammoniakavgången I jordbruket—emissionsfaktorer för ammoniak för lagring och spridning av stallgödsel. (Overview of calculations of ammonia losses from agriculture—emission factors for ammonia from storing and spreading of manure). JTI, Institutet för jordbruks- och miljöteknik. www.jti.slu.se
  28. Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P, Tubiello F, Grandgirard D, Monni S, Biala K (2010) Evaluation of the livestock sector's contribution to the EU Greenhouse Gas Emissions (GGELS) e final report. European Commission, Joint Research Center, IspraGoogle Scholar
  29. Macedo MN, DeFries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc Natl Acad Sci USA 109:1341–1346CrossRefGoogle Scholar
  30. Mollenhorst H, Berentsen PBM, De Boer IJM (2006) On-farm quantification of sustainability indicators: an application to egg production systems. Brit Poultry Sci 47:405–417CrossRefGoogle Scholar
  31. Ogle SM, Swan A, Paustian K (2012) No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric Ecosyst Environ 149:37–49CrossRefGoogle Scholar
  32. Pelletier N (2008) Environmental performance in the US broiler poultry sector: life cycle energy use and greenhouse gas, ozone. Agric Syst 98:67–73CrossRefGoogle Scholar
  33. Product Board Animal Feed (Productschap Diervoeder) (2008) Tabellenboek Veevoeding 2008. Productschap Diervoeder, CVB, Den HaagGoogle Scholar
  34. Prudêncio da Silva V, van der Werf HMG, Spies A, Soares SR (2010) Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J Environ Manage 91:1831–1839CrossRefGoogle Scholar
  35. Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Schmidt WP, Suh S, Weidema BP, Pennington DW (2004) Life cycle assessment Part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int 30:701–720CrossRefGoogle Scholar
  36. Sakai S, Yokoyama K (2002) Formulation of sensitivity analysis in life cycle assessment using a perturbation method. Clean Techn Environ Policy 4:72–78CrossRefGoogle Scholar
  37. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRefGoogle Scholar
  38. SEPA (2008) Läckage av näringsämnen från svensk åkermark (Nutrient leaching from Swedish arable land) Rapport 5823, the Swedish Environmental Protection Agency. ISBN 978-91-620-5823-4pdfGoogle Scholar
  39. Steen B (1997) On uncertainty and sensitivity of LCA-based priority setting. J Cleaner Prod 5:255–262CrossRefGoogle Scholar
  40. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, De Haan C (2006) Livestock's long shadow: environmental issues and options. FAO, RomeGoogle Scholar
  41. Thomassen MA, Van Calker KJ, Smits MCJ, Iepema GL, De Boer IJM (2008) Life cycle assessment of conventional and organic milk production in the Netherlands. Agric Syst 96:95–107CrossRefGoogle Scholar
  42. Thomassen MA, Dolman MA, Van Calker KJ, De Boer IJM (2009) Relating life cycle assessment indicators to gross value added for Dutch dairy farms. Ecol Econ 68:2278–2284CrossRefGoogle Scholar
  43. Van Der Hoek KW, Van Schijndel MW, Kuikman PJ (2007) Direct and indirect nitrous oxide emissions from agricultural soils, 1990—2003. Background document on the calculation method for the Dutch National Inventory Report. RIVM report 680125003/2007Google Scholar
  44. Van der Werf HMG, Kanyarushoki C, Corson MS (2009) An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. J Environ Manage 90:3643–3652CrossRefGoogle Scholar
  45. Van Middelaar CE, Berentsen PBM, Dolman MA, De Boer IJM (2011) Eco-efficiency in the production chain of Dutch semi-hard cheese. Livest Sci 139:91–99CrossRefGoogle Scholar
  46. Vellinga TV, Hoving IE (2011) Maize silage for dairy cows: mitigation of methane emissions can be offset by land use change. Nutr Cycling Agroecosyst 89:413–426CrossRefGoogle Scholar
  47. Vellinga TV, Van Den Pol-van DA, Kuikman PJ (2004) The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands. Nutr Cycling Agroecosyst 70:33–45CrossRefGoogle Scholar
  48. Weidema B (2003) Market information in life cycle assessment. Environmental Project No. 863 2003. Miljøprojekt. The Danish Environmental Protection Agency (Danish EPA)Google Scholar
  49. Zehetmeier M, Baudracco J, Hoffmann H, Heißenhuber A (2012) Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal 6:154–166CrossRefGoogle Scholar
  50. Zotarelli L, Zatorre NP, Boddey RM, Urquiaga S, Jantalia CP, Franchini JC, Alves BJR (2012) Influence of no-tillage and frequency of a green manure legume in crop rotations for balancing N outputs and preserving soil organic C stocks. Field Crops Res. doi: 10.1016/j.fcr.2011.12.013

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Corina E. van Middelaar
    • 1
  • Christel Cederberg
    • 2
  • Theun V. Vellinga
    • 3
  • Hayo M. G. van der Werf
    • 4
    • 5
  • Imke J. M. de Boer
    • 1
  1. 1.Animal Production Systems GroupWageningen UniversityWageningenThe Netherlands
  2. 2.SIK—The Swedish Institute for Food and BiotechnologyGothenburgSweden
  3. 3.Wageningen UR Livestock Research, Animal Science GroupLelystadThe Netherlands
  4. 4.INRA, UMR 1069 Sol Agro et hydro SystèmeRennesFrance
  5. 5.Agrocampus OuestRennesFrance

Personalised recommendations