Advertisement

Parameterized tool for site specific LCAs of wind energy converters

  • Till ZimmermannEmail author
LCA FOR ENERGY SYSTEMS

Abstract

Purpose

The purpose of this project was to provide a parameterized LCA tool that allows performing site specific life cycle assessments for different wind energy converter types by varying a limited number of relevant parameters. Hereby, it addresses the limited transferability of WEC LCA results to other sites as well as the increasing demand for such data.

Methods

Basis of the work was an extensive primary data collection at the respective production facilities and other relevant stakeholders like site assessment, service etc. Most of the required data was available at first hand and was completed with data from literature and LCA databases. Based on this data, a complex parameterized material flow model has been built and different product variants have been pre-defined within the model, including relevant production processes and upstream. The pre-definition of these product variants allows reducing the minimum number of parameters that need to be configured for site specific LCAs from a total of over 330 to just nine parameters.

Results and conclusions

In the future, choosing the right type of technology for specific sites will become more important; especially in the face of increasing land use conflicts and increasing competition between renewable energy technologies. Site and technology specific LCAs prove to be a valuable tool for this assessment. Tools like the presented significantly reduce the effort required for performing these LCAs. Additionally, they can be used for various other purposes like environmental assessments of different repowering scenarios and eco design.

Keywords

Parameterization Site specific LCA Transferability Wind energy 

References

  1. Angerer G, Erdmann L, Marscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwede M (2009) Rohstoffe für Zukunftstechnologien. Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. Fraunhofer-IRB-Verl, StuttgartGoogle Scholar
  2. Briem S, Viebahn P, Gürzenich D, Corradini R et al (2004) Lebenszyklusanalyse ausgewählter zukünftiger Stromerzeugungstechniken. Forschungsvorhaben mit finanzieller Unterstützung des Bundesministeriums für Wirtschaft und Arbeit, StuttgartGoogle Scholar
  3. Buchert M, Schüler D, Bleher D (2009) Critical metals for future sustainable technologies and their recycling potential. DarmstadtGoogle Scholar
  4. Bunk O (2002) A positive environmental balance. Converters amortize within a few month. Windblatt (3):12–13Google Scholar
  5. BWE wy (2010) Energiebilanzen von Windenergie-Anlagen. http://www.wind-energie.de/de/themen/windenergie-von-a-z/energiebilanz/. Accessed 04 Aug 2010
  6. Crawford RH (2007) Life-cycle energy analysis of wind turbines. an assessment of the effect of size on energy yield. WIT Transactions on Ecology and the Environment. doi: 10.2495/ESUS070161
  7. d’Souza N, Gbegbaje-Das E, Shonfield P (2011) Life cycle assessment of electricity production from a V112 turbine wind plant. CopenhagenGoogle Scholar
  8. Elsam Engineering A/S (2004) Life cycle assessment of offshore and onshore sited wind farms, o.O. Available from: http://www.vestas.com/Admin/Public/DWSDownload.aspx?File=%2FFiles%2FFiler%2FEN%2FSustainability%2FLCA%2FLCA_V80_2004_uk.pdf [17 August 2010].
  9. ENERCON GmbH (2011) ENERCON WECs produce clean energy without neodymium. http://www.enercon.de/en-en/1337.htm. Accessed 10 Dec 2011
  10. Geuder M (2004) Energetische Bewertung von WEA. Was man über Stoff- und Energiebilanz von erneuerbaren Energien wissen muss. Erneuerbare Energien 8:25–29Google Scholar
  11. Guezuraga B, Zauner R, Pölz W (2011) Life cycle assessment of two different 2MW class wind turbines. Renew Energ 37(1):37–44CrossRefGoogle Scholar
  12. JRC—Joint Research Center—Institute for Prospective Technological Studies (2010) Reference Documents. http://eippcb.jrc.es/reference/. Accessed 05 September 2011
  13. Martínez E, Sanz F, Pellegrini S, Jiménez E, Blanco J (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energ 34(3):667–673CrossRefGoogle Scholar
  14. Mayer-Spohn O, Wissel S, Voß A, Fahl U, Blesl M (2005) Lebenszyklusanalyse ausgewählter Stromerzeugungstechniken. Arbeitsbericht, StuttgartGoogle Scholar
  15. PE, LBP (1999–2008) GaBi 4. Software-System and Databases for Life Cycle Engineering, Stuttgart, EchterdingenGoogle Scholar
  16. Pick E, Wagner H (1998) Beitrag zum kumulierten Energieaufwand ausgewählter Windenergiekonverter. Arbeitsbericht, EssenGoogle Scholar
  17. Quaschning V (1999) Energetische Amortisation und Erntefaktoren regenerativer Energien, BerlinGoogle Scholar
  18. Schleisner L (2000) Life cycle assessment of a wind farm and related externalities. Renew Energ 20:279–288CrossRefGoogle Scholar
  19. Tremeac B, Meunier F (2009) Life cycle analysis of 4.5MW and 250W wind turbines. Renew Sust Energ Rev 13(8):2104–2110CrossRefGoogle Scholar
  20. VAR Verband der Aluminumrecycling-Industrie e.V. (2010) Aluminium-Recycling. http://www.aluminium-recycling.com/de/recycling/allgemein.php. Accessed 15 Sep 2010
  21. Vestas Wind Systems A/S (2006) Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V90-3.0 MW turbines, 2nd edn. Randers, DenmarkGoogle Scholar
  22. vkn (2010) SAAR—Gesellschaft für die Verwertung von Kraftwerksnebenprodukten und Ersatzbrennstoffen Kesselsand. http://www.vkn-online.de/vkn_smartm/html/f/19/prod_strahl.html. Accessed 23 Sep 2010
  23. Wagner H (2004) Ganzheitliche Energiebilanz von Windkraftanlagen: Wie sauber sind die weißen Riesen? maschinenbau RUBIN:6–11Google Scholar
  24. Wagner H, Epe A (2009) Energy from wind—perspectives and research needs. Eur Phys J Spec Top 176(1):107–114CrossRefGoogle Scholar
  25. Worldsteel Association (2008) Worldsteel Recycling Methodology. Application of the worldsteel LCI data to recyclingGoogle Scholar
  26. Zimmermann T (2011) Entwicklung eines Life Cycle Assessment Tools für Windenergieanlagen. Thesis, Universität BremenGoogle Scholar
  27. Zimmermann T (2011) Fully parameterized LCA tool for wind energy converters. www.lcm2011.org/papers.html?file=tl_files/pdf/poster/day2/Zimmermann-Fully_parameterized_LCA_tool_for_wind_energy_converters-567_b.pdf [25 November 2011]
  28. Zimmermann T, Gößling-Reisemann S (2011) Optimal repowering of wind energy converters: Energy demand and CO2 intensity as indicators. www.lcm2011.org/papers.html?file=tl_files/pdf/poster/day2/Zimmermann-Optimal_repowering_of_wind_energy_converters-601_b.pdf [25 November 2011]

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Faculty of Production Engineering, Department Technological Design and Development, artec—research center for sustainability studiesUniversity of BremenBremenGermany

Personalised recommendations