Skip to main content

Advertisement

Log in

Parameterized tool for site specific LCAs of wind energy converters

  • LCA FOR ENERGY SYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this project was to provide a parameterized LCA tool that allows performing site specific life cycle assessments for different wind energy converter types by varying a limited number of relevant parameters. Hereby, it addresses the limited transferability of WEC LCA results to other sites as well as the increasing demand for such data.

Methods

Basis of the work was an extensive primary data collection at the respective production facilities and other relevant stakeholders like site assessment, service etc. Most of the required data was available at first hand and was completed with data from literature and LCA databases. Based on this data, a complex parameterized material flow model has been built and different product variants have been pre-defined within the model, including relevant production processes and upstream. The pre-definition of these product variants allows reducing the minimum number of parameters that need to be configured for site specific LCAs from a total of over 330 to just nine parameters.

Results and conclusions

In the future, choosing the right type of technology for specific sites will become more important; especially in the face of increasing land use conflicts and increasing competition between renewable energy technologies. Site and technology specific LCAs prove to be a valuable tool for this assessment. Tools like the presented significantly reduce the effort required for performing these LCAs. Additionally, they can be used for various other purposes like environmental assessments of different repowering scenarios and eco design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Angerer G, Erdmann L, Marscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwede M (2009) Rohstoffe für Zukunftstechnologien. Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. Fraunhofer-IRB-Verl, Stuttgart

    Google Scholar 

  • Briem S, Viebahn P, Gürzenich D, Corradini R et al (2004) Lebenszyklusanalyse ausgewählter zukünftiger Stromerzeugungstechniken. Forschungsvorhaben mit finanzieller Unterstützung des Bundesministeriums für Wirtschaft und Arbeit, Stuttgart

  • Buchert M, Schüler D, Bleher D (2009) Critical metals for future sustainable technologies and their recycling potential. Darmstadt

  • Bunk O (2002) A positive environmental balance. Converters amortize within a few month. Windblatt (3):12–13

  • BWE wy (2010) Energiebilanzen von Windenergie-Anlagen. http://www.wind-energie.de/de/themen/windenergie-von-a-z/energiebilanz/. Accessed 04 Aug 2010

  • Crawford RH (2007) Life-cycle energy analysis of wind turbines. an assessment of the effect of size on energy yield. WIT Transactions on Ecology and the Environment. doi:10.2495/ESUS070161

  • d’Souza N, Gbegbaje-Das E, Shonfield P (2011) Life cycle assessment of electricity production from a V112 turbine wind plant. Copenhagen

  • Elsam Engineering A/S (2004) Life cycle assessment of offshore and onshore sited wind farms, o.O. Available from: http://www.vestas.com/Admin/Public/DWSDownload.aspx?File=%2FFiles%2FFiler%2FEN%2FSustainability%2FLCA%2FLCA_V80_2004_uk.pdf [17 August 2010].

  • ENERCON GmbH (2011) ENERCON WECs produce clean energy without neodymium. http://www.enercon.de/en-en/1337.htm. Accessed 10 Dec 2011

  • Geuder M (2004) Energetische Bewertung von WEA. Was man über Stoff- und Energiebilanz von erneuerbaren Energien wissen muss. Erneuerbare Energien 8:25–29

    Google Scholar 

  • Guezuraga B, Zauner R, Pölz W (2011) Life cycle assessment of two different 2MW class wind turbines. Renew Energ 37(1):37–44

    Article  Google Scholar 

  • JRC—Joint Research Center—Institute for Prospective Technological Studies (2010) Reference Documents. http://eippcb.jrc.es/reference/. Accessed 05 September 2011

  • Martínez E, Sanz F, Pellegrini S, Jiménez E, Blanco J (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energ 34(3):667–673

    Article  Google Scholar 

  • Mayer-Spohn O, Wissel S, Voß A, Fahl U, Blesl M (2005) Lebenszyklusanalyse ausgewählter Stromerzeugungstechniken. Arbeitsbericht, Stuttgart

    Google Scholar 

  • PE, LBP (1999–2008) GaBi 4. Software-System and Databases for Life Cycle Engineering, Stuttgart, Echterdingen

  • Pick E, Wagner H (1998) Beitrag zum kumulierten Energieaufwand ausgewählter Windenergiekonverter. Arbeitsbericht, Essen

    Google Scholar 

  • Quaschning V (1999) Energetische Amortisation und Erntefaktoren regenerativer Energien, Berlin

  • Schleisner L (2000) Life cycle assessment of a wind farm and related externalities. Renew Energ 20:279–288

    Article  CAS  Google Scholar 

  • Tremeac B, Meunier F (2009) Life cycle analysis of 4.5MW and 250W wind turbines. Renew Sust Energ Rev 13(8):2104–2110

    Article  CAS  Google Scholar 

  • VAR Verband der Aluminumrecycling-Industrie e.V. (2010) Aluminium-Recycling. http://www.aluminium-recycling.com/de/recycling/allgemein.php. Accessed 15 Sep 2010

  • Vestas Wind Systems A/S (2006) Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V90-3.0 MW turbines, 2nd edn. Randers, Denmark

    Google Scholar 

  • vkn (2010) SAAR—Gesellschaft für die Verwertung von Kraftwerksnebenprodukten und Ersatzbrennstoffen Kesselsand. http://www.vkn-online.de/vkn_smartm/html/f/19/prod_strahl.html. Accessed 23 Sep 2010

  • Wagner H (2004) Ganzheitliche Energiebilanz von Windkraftanlagen: Wie sauber sind die weißen Riesen? maschinenbau RUBIN:6–11

  • Wagner H, Epe A (2009) Energy from wind—perspectives and research needs. Eur Phys J Spec Top 176(1):107–114

    Article  Google Scholar 

  • Worldsteel Association (2008) Worldsteel Recycling Methodology. Application of the worldsteel LCI data to recycling

  • Zimmermann T (2011) Entwicklung eines Life Cycle Assessment Tools für Windenergieanlagen. Thesis, Universität Bremen

  • Zimmermann T (2011) Fully parameterized LCA tool for wind energy converters. www.lcm2011.org/papers.html?file=tl_files/pdf/poster/day2/Zimmermann-Fully_parameterized_LCA_tool_for_wind_energy_converters-567_b.pdf [25 November 2011]

  • Zimmermann T, Gößling-Reisemann S (2011) Optimal repowering of wind energy converters: Energy demand and CO2 intensity as indicators. www.lcm2011.org/papers.html?file=tl_files/pdf/poster/day2/Zimmermann-Optimal_repowering_of_wind_energy_converters-601_b.pdf [25 November 2011]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Zimmermann.

Additional information

Responsible editor: Berlan Rodriguez Perez

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, T. Parameterized tool for site specific LCAs of wind energy converters. Int J Life Cycle Assess 18, 49–60 (2013). https://doi.org/10.1007/s11367-012-0467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-012-0467-y

Keywords

Navigation