Gender as a factor in an environmental assessment of the consumption of animal and plant-based foods in Germany

  • Toni MeierEmail author
  • Olaf Christen



Due to their production intensity, different foods of animal or plant origin play a crucial role in the assessment of the environmental impacts of human nutrition and diets. Based on a representative nutrition survey in Germany from the year 2006, a life cycle assessment (LCA) was conducted to quantify nutrition-related emissions of animal and plant-based foods (excluding beverages), with a special focus on the socio-demographic factor gender.

Materials and methods

For the study, representative data sets concerning German food production and consumption were used. These were complemented by the Danish LCA Food database and other LCA data to analyse the impact of food imports. As regards environmental impact assessment, global warming potential (GWP) was assessed, which included emissions from direct land use change and land use (dLUC, LU), along with three inventory indicators (ammonia emissions, land use, blue water use). The following food groups were analysed from cradle-to-store and their impacts were evaluated and compared with each other: animal-based foods (meat products, milk products, egg products and fish products), plant-based foods (grain products, vegetables, fruits, potato products, margarine/oils, sugar/sweets). The reference year in the study is the year 2006.

Results and discussion

For all indicators, the results show strong variation between the genders. Even if the physiologically different consumption patterns among men and women are adjusted on a weight basis, men show a higher impact in terms of GWP (CO2 eq. +25%), ammonia emissions (+30%) and land use (+24%). In contrast, women demonstrate a higher water demand (+11%). These differences are primarily caused by a higher share of meat and meat products in the usual diet of men (+28%) as well as of fruit and vegetables in the diet of women (+40%). If men were to shift qualitatively to the usual diet of women, then 14.8 Mt CO2 eq. and 60.1 kt ammonia emissions could be saved annually. Within the system boundaries of our study, this would translate into a reduction of 12% of CO2 eq. and 14% of ammonia emissions. With regard to land use, this equals an area of 15,613 km2 year−1 (−11%), whereas the total blue water demand would be increased by 94 Mm3 year−1 (+7%). Limitations within this study are caused by the system boundaries cradle-to-store and are also due to the restricted set of environmental indicators which were analysed. Nonetheless, our results for GWP and land use are in keeping with previous studies. The results concerning ammonia and blue water use are limited when compared with other study results.


The study shows that within one society distinct diet profiles with markedly different environmental impacts are already established. Taking cultural and physiological considerations among the genders into account, these differences could be seen as offering potential opportunities to strengthen sustainable diet profiles. Further research should also consider health impact assessments to ensure that alterations in diet profiles due to environmental constraints do not lead to disadvantageous public health effects. Particular attention should be paid here to potentially undernourished subgroups (such as the elderly, sick people, pregnant women).


Agri-food sector Diet profiles Diet shift Direct land use change/land use (dLUC/LU) Hybrid-LCA Input–output analysis National Nutrition Survey II Nutrition patterns 



We thank the German Environmental Foundation (Deutsche Bundesstiftung Umwelt) and the Max-Rubner Institute for supporting this research.


  1. BLE (2009) Anlandungen, Einfuhr und Konsum von Fisch nach Fischarten 2006. Bundesanstalt für Landwirtschaft und Ernährung, BonnGoogle Scholar
  2. BLE (2010) Marktordnungswaren-Meldeverordnung der Milchwirtschaft. Bundesanstalt für Landwirtschaft und Ernährung, BonnGoogle Scholar
  3. BMELV (2009) Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten in der Bundesrepublik Deutschland. 53. Jahrgang, Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Bonn/BerlinGoogle Scholar
  4. Boulay A-M, Bouchard C, Bulle C, Deschênes L, Margni M (2011) Categorizing water for LCA inventory. Int J Life Cycle Assess 16(7):639–651CrossRefGoogle Scholar
  5. Carlsson-Kanyama A (1998) Climate change and dietary choices — how can emissions of greenhouse gases from food consumption be reduced? Food Policy 23(3/4):277–293CrossRefGoogle Scholar
  6. Dairy UK, Dairy Co, Carbon Trust (2010) Guidelines for the Carbon Footprinting of Dairy Products in the UK.Google Scholar
  7. Davis J, Sonesson U, Baumgartner DU, Nemecek T (2010) Environmental impact of four meals with different protein sources: case studies in Spain and Sweden. Food Res Int 43(7):1874–1884CrossRefGoogle Scholar
  8. EC (2003) Household Budget Surveys in the EU. Methodology and recommendations for harmonisation – 2003. Eurostat, Social Statistics, European Commission, LuxembourgGoogle Scholar
  9. EC (2011) A Roadmap for moving to a competitive low carbon economy in 2050. European Commission, BrusselsGoogle Scholar
  10. EFSA (2011) Use of the EFSA Comprehensive European Food Consumption Database in Exposure Assessment. European Food Safety Authority, ParmaGoogle Scholar
  11. EPD (2010) Product category rules – Processed liquid milk (CPC Class 2211, PCR 2010:12). The international EPD System, SwedenGoogle Scholar
  12. Federal Statistical Office (2010) Statistical Yearbook 2009. Statistisches Bundesamt, Wiesbaden, p 315Google Scholar
  13. Federal Statistical Office (several volumes) Household budget surveys. Food, stimulants, drinks. Wiesbaden.Google Scholar
  14. Gerbens-Leenes W, Nonhebel S (2005) Food and land use. The influence of consumption patterns on the use of agricultural resources. Appetite 45(1):24–31CrossRefGoogle Scholar
  15. Hoekstra AY, Chapagain AK (2006) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manag 21(1):35–48CrossRefGoogle Scholar
  16. Hoffmann I (2002) Ernährungsempfehlungen und Ernährungsweisen — Auswirkungen auf Gesundheit. Habilitationsschrift, Universität Gießen, Umwelt und GesellschaftGoogle Scholar
  17. Institute of Applied Ecology (2010) GEMIS 4.6 — Global Emissions Model of Integrated Systems. Institut für angewandte Ökologie, FreiburgGoogle Scholar
  18. IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4, JapanGoogle Scholar
  19. ISO (2006) Environmental Management — Life Cycle Assessment — Principles and framework. ISO 14040/14044:2006. International Organization for Standardization, ParisGoogle Scholar
  20. Jungbluth N (2000) Umweltfolgen des Nahrungsmittelkonsums: Beurteilung von Produktmerkmalen auf Grundlage einer modularen Ökobilanz, Dissertation Nr. 13499 ETH, Zürich, p 30Google Scholar
  21. Jungbluth N, Nathani C, Stucki M, Leuenberger M (2011) Environmental Impacts of Swiss Consumption and Production. A combination of input–output analysis with life cycle assessment. Federal Office for the Environment, Bern. Environmental Studies no. 1111, pp 171Google Scholar
  22. Kramer I, Müller-Reismann KF, Schaffner J, Bossel H, Meier-Ploeger A, Vogtmann H (1994) Landwirtschaft und Ernährung. Veränderungstendenzen im Ernährungssystem und ihre klimatische Relevanz. Enquete-Kommission "Schutz der Erdatmosphäre" des Deutschen Bundestages: Landwirtschaft und ErnährungGoogle Scholar
  23. Kübler W, Anders HJ, Heeschen W (1995) Ergebnisse der Nationalen Verzehrsstudie (1985–1988) über die Lebensmittel- und Nährstoffaufnahme in der Bundesrepublik Deutschland. Band XI, VERA-Schriftenreihe, GießenGoogle Scholar
  24. Leenes PW (2006) Natural resource use for food. Land, water and energy in production and consumption systems. University Library Groningen, GroningenGoogle Scholar
  25. Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P, Tubiello F, Grandgirard D, Monni S, Biala K (2010) Evaluation of the livestock sector's contribution to the EU greenhouse gas emissions (GGELS) – final report. European Commission, Joint Research CentreGoogle Scholar
  26. Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of crops and derived crop products, Value of Water Research Report Series No. 47, UNESCO-IHE, Delft, the NetherlandsGoogle Scholar
  27. Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009) Assessing freshwater use impacts in LCA: Part I—inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14(1):28–42CrossRefGoogle Scholar
  28. Molero JC (2006) Life Cycle Assessment (LCA) as a Decision Support Tool (DST) for the ecoproduction of olive oil. TASK 3.3: implementation of life cycle inventory in Ribera Baja (Navarra, Spain). Fundación LEIA, Environment and Energy UnitGoogle Scholar
  29. MRI (2008) Nationale Verzehrsstudie II — Ergebnisbericht, Teil 2 — Die bundesweite Befragung zur Ernährung von Jugendlichen und Erwachsenen. Max Rubner Institute, Karlsruhe, pp 174–234Google Scholar
  30. Muñoz I, Milà i Canals L, Fernández-Alba AR (2010) Life cycle assessment of the average Spanish diet including human excretion. Int J Life Cycle Assess 15(8):794–805CrossRefGoogle Scholar
  31. Nielsen PH, Nielsen AM, Weidema BP, Dalgaard R, Halberg N (2003) LCA food data base. Accessed 9 September 2011
  32. Nijdam DS, Wilting HC, Goedkoop MJ, Madsen J (2005) Environmental load from Dutch private consumption—how much damage takes place abroad? J Ind Ecol 9(1–2):147–168Google Scholar
  33. Ntiamaoh A, Afrane G (2008) Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. J Clean Prod 16(16):1735–1740CrossRefGoogle Scholar
  34. OECD (2001) Environmental Indicators for Agriculture Methods and Results. Organisation for Economic Co-operation and Development, Paris, FranceGoogle Scholar
  35. Pelletier N, Tyedmers P, Sonesson U, Scholz A, Ziegler F, Flysjo A et al (2009) Not all salmon are created equal: life cycle assessment (LCA) of global salmon farming systems. Environ Sci Technol 43(23):8730–8736CrossRefGoogle Scholar
  36. Peters CJ, Wilkins JL, Fick GW (2007) Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity: the New York State example. Renew Agric Food Syst 22(02):145CrossRefGoogle Scholar
  37. Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43(11):4098–4104CrossRefGoogle Scholar
  38. Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environ Chang 20(3):451–462CrossRefGoogle Scholar
  39. Quack D, Rüdenauer I (2004) Stoffstromanalyse relevanter Produktgruppen. Energie- und Stoffstromanalyse der privaten Haushalte in Deutschland im Jahr 2001. Öko-Institut e. V. – Institut für angewandte Ökologie, Freiburg, p 95Google Scholar
  40. Schmidt T, Osterburg B (2011) Berichtsmoduls ‘Landwirtschaft und Umwelt’ in den Umweltökonomischen Gesamtrechnungen II. Tabellenband. Von Thünen-Institut (vTI). Braunschweig, p 29Google Scholar
  41. Sonnenberg A, Chapagain AK, Geiger M, August D (2009) Der Wasser-Fußabdruck Deutschlands. Woher stammt das Wasser, das in unseren Lebensmitteln steckt? WWF Deutschland, Frankfurt am MainGoogle Scholar
  42. Stehfest E, Bouwman L, Vuuren DP, Elzen MGJ, Eickhout B, Kabat P (2009) Climate benefits of changing diet. Clim Change 95(1–2):83–102CrossRefGoogle Scholar
  43. Taylor C (2000) Ökologische Bewertung von Ernährungsweisen anhand ausgewählter Indikatoren. Dissertation, Justus-Liebig-Universität. Gießen, p 179Google Scholar
  44. Tukker A, Huppes G, Guinée J, Heijungs R, de Koning A, van Oers L et al (2006) Environmental Impact of Products (EIPRO). Analysis of the life cycle environmental impacts related to the final consumption of the EU-25. Eurpean Commission, Joint Research CenterGoogle Scholar
  45. Tukker A, Goldbohm RA, de Koning A, Verheijden M, Kleijn R, Wolf O et al (2011) Environmental impacts of changes to healthier diets in Europe. Ecol Econ 70(10):1776–1788CrossRefGoogle Scholar
  46. Wiegmann K, Eberle U, Fritsche UR, Hünecke K (2005) Umweltauswirkungen von Ernährung – Stoffstromanalysen und Szenarien. BMBF-Forschungsprojekt ‘Ernährungswende’, Diskussionspapier Nr. 7. Öko-Institut e. V. – Institut für angewandte Ökologie, Darmstadt/Hamburg, p 71Google Scholar
  47. Woitowitz A (2007) Auswirkungen einer Einschränkung des Verzehrs von Nahrungsmitteln tierischer Herkunft auf ausgewählte Nachhaltigkeitsindikatoren – dargestellt am Beispiel konventioneller und ökologischer Wirtschaftsweise. Technische Universität München, DissertationGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Agricultural and Nutritional Sciences, Chair of Agronomy and Organic FarmingUniversity Halle-WittenbergHalle (Saale)Germany

Personalised recommendations