Advertisement

The International Journal of Life Cycle Assessment

, Volume 17, Issue 9, pp 1094–1103 | Cite as

Integration of spatial analyses into LCA—calculating GHG emissions with geoinformation systems

  • Boris DresenEmail author
  • Michael Jandewerth
PROMOTION OF YOUNG SCIENTISTS IN LCA

Abstract

Purpose

Spatial analyses in life cycle assessments are hardly ever conducted. The combination of geoinformation systems and life cycle assessments (LCA) databases is a way to realise such complex calculations. By the example of energetic utilisation of biomass via conditioned biogas a geoinformation systems-based calculation tool is presented which combines geodata on biomass potentials, infrastructure, land use, cost and technology databases with analysis tools for the planning of biogas plants to identify the most efficient plant locations, to calculate balances of emissions, biomass streams and costs.

Methods

The calculations include the impact categories greenhouse gases, acidification, and eutrophication and were tested for the Lower Rhine region and the Altmark region in Germany. The results of the greenhouse gas (GHG) balances are presented. By using only nationwide available datasets, the calculation tool can be used in other regions as well.

Results and discussion

Balances of individual sites, regional balances and their temporal development can be calculated in geoinformation systems (GIS) using LCA methods. The composition of the substrates varies according to site and catchment area and lead to large variations in plant configurations and the resulting GHG balances and cost structures.

Conclusions

GIS tools do not only allow the assessment of individual plants, but also the determination of the GHG reduction potential, the biogas potential as well as the necessary investment costs for entire regions. Thus, the exploitation of regional biogas potentials in a way that is sustainable and climate-friendly becomes simple.

Keywords

Biogas Biomass Calculation tool Geoinformation system GHG emissions Spatial analysis 

References

  1. Association for Technology and Structures in Agriculture, KTBL (2005) Gasausbeuten in landwirtschaftlichen Biogasanlagen, Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), Heft 88Google Scholar
  2. Association for Technology and Structures in Agriculture, KTBL (2006) Energiepflanzen—Datensammlung für die Planung des Energiepflanzenbaus, Darmstadt, 1. AuflGoogle Scholar
  3. Bill R (1999) Grundlagen der Geo-Informationssysteme, band 1: hardware. Software und Daten, HeidelbergGoogle Scholar
  4. Börjesson P, Berglund M (2007) Environmental systems analysis of biogas systems—part ii: the environmental impact of replacing various reference systems. Biomass Bioenerg 31:326–344CrossRefGoogle Scholar
  5. Breuer T, Holm-Müller K (2006) Abschätzung der Chancen aus der Förderung von Biokraftstoffen für die ländlichen Regionen in Nordrhein-Westfalen, Landwirtschaftliche Fakultät der Universität Bonn, Schriftenreihe des Lehr- und Forschungsschwerpunktes USL, Nr., p 137Google Scholar
  6. Ecoinvent (2004) Code of Practice. Ecoinvent report No. 2, Swiss Centre for Life Cycle Inventories, DübendorfGoogle Scholar
  7. Fritsche U, Dehoust G, Jenseit W, Hünecke K, Rausch L, Schüler D, Wiegmann K, Hiebel M et al (2004) Material flow analysis of sustainable biomass use for energy; in German, Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse. Öko-Institut, Fraunhofer UMSICHT, Institut für Energetik und Umwelt (IE), Institut für Energie- und Umweltforschung (IFEU), Technische Universität Braunschweig. Technische Universität München, DarmstadtGoogle Scholar
  8. Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010a) Coupling GIS and LCA for biodiversity assessment of land use, part 1: inventory modelling. Int J Life Cycle Assess 15:454–467CrossRefGoogle Scholar
  9. Geyer R, Stoms DM, Lindner JP, Davis FW, Wittstock B (2010b) Coupling GIS and LCA for biodiversity assessment of land use, part 2: impact assessment. Int J Life Cycle Assess 15:692–703CrossRefGoogle Scholar
  10. Gömann H, Kreins P, Breuer T (2008) Einfluss steigender Weltagrarpreise auf die Wettbewerbsfähigkeit des Energiemaisanbaus in Deutschland, Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues. Band 43:517–527Google Scholar
  11. Heuvelmans G, Muys B, Feyen J (2005) Extending the life cycle methodology to cover impacts of land use systems on the water balance. Int J Life Cycle Assess 10(2):113–119CrossRefGoogle Scholar
  12. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484CrossRefGoogle Scholar
  13. Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth Assessment Report “Climate Change 2007”. Cambridge University Press, UKGoogle Scholar
  14. Mueller S (2006) Manure’s allure: variation of the financial, environmental, and economic benefits from combined heat and power systems integrated with anaerobic digesters at hog farms across geographic and economic regions. Renew Energ 32:248–256CrossRefGoogle Scholar
  15. Murphy JD, McKoegh E, Kiely G (2004) Technical/economic/environmental analysis of biogas utilisation. Appl Energ 77:407–427CrossRefGoogle Scholar
  16. Núñez M, Civit B, Muñoz P, Arena AP, Rieradevall J, Antón A (2010) Assessing potential desertification environmental impact in life cycle assessment, part 1: methodological aspects. Int J Life Cycle Assess 15:67–78CrossRefGoogle Scholar
  17. Potting J, Hauschild M (1997) LCA methodology—predicted environmental impact and expected occurrence of actual environmental impact, process and production engineering. Int J Life Cycle Assess 2(4):209–216CrossRefGoogle Scholar
  18. Potting J, Hauschild M (2006) Spatial differentiation in life cycle impact assessment—a decade of method development to increase the environmental realism of LCIA. Int J Life Cycle Assess 11:11–13CrossRefGoogle Scholar
  19. Shah VP, Ries RJ (2009) A characterization model with spatial and temporal resolution for life cycle impact assessment of photochemical precursors in the United States. Int J Life Cycle Assess 14:313–327CrossRefGoogle Scholar
  20. SRU (2007) Climate Change Mitigation by Biomass, German Advisory Council on the Environment (SRU), Special report, BerlinGoogle Scholar
  21. Tricase C, Lombardi M (2009) State of the art and prospects of Italian biogas production from animal sewage: technical–economic considerations. Renew Energ 34:477–485CrossRefGoogle Scholar
  22. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, BMU (2007) Leitstudie 2007, “Ausbaustrategie Erneuerbare Energien”, Aktualisierung und Neubewertung bis zu den Jahren 2020 und 2030 mit Ausblick bis 2050, StuttgartGoogle Scholar
  23. Urban W, Girod K, Lohmann H (2008) Technologien und Kosten der Biogasaufbereitung und Einspeisung in das Erdgasnetz. Ergebnisse der Markterhebung 2007–2008, OberhausenGoogle Scholar
  24. Yi I, Itsubo N, Inaba A, Matsumoto K (2007) Development of the interregional I/O based LCA method considering region-specifics of indirect effects in regional evaluation. Int J Life Cycle Assess 12(6):353–364Google Scholar
  25. Ziegler F, Nilsson P, Mattsson B, Walther Y (2003) LCA methodology with case study—life cycle assessment of frozen cod fillets including fishery-specific environmental impacts. Int J Life Cycle Assess 8(1):39–47Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Business Unit Resources ManagementFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHTOberhausenGermany
  2. 2.Business Unit Energy and Recycling MaterialsFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHTOberhausenGermany

Personalised recommendations