Life cycle assessment of electricity transmission and distribution—part 1: power lines and cables

  • Raquel Santos Jorge
  • Troy R. Hawkins
  • Edgar G. Hertwich



The purpose of this study is to provide life cycle inventory data and results for components of electrical grids to the larger community of life cycle assessment practitioners. This article is the first in a series of two, each focusing on different components of power grids. In part 1, the objects under scope are power lines and cables. Systems for overhead, underground, and subsea transmission are modeled here, including HVDC systems used in long-distance transmission.


We use process-based life cycle assessment based on information provided by companies and in reports, Ecoinvent v2.2 as a background dataset and ReCiPe Midpoint Hierarchist perspective v1.0 as the impact assessment method. The average European power mix is used to model the electrical energy required to compensate power losses in the equipment.

Results and discussion

Under the assumption of European power mix, power losses are the dominant process for impacts of lines and cables in all impact categories, contributing with up to 99% to climate change impacts. An exception is the category of metal depletion, for which the production of metal parts is the most relevant process.


After power losses, processes generating the most impacts for overhead lines are the production of metals for masts and conductors; production of foundations comes third. Recycling of metal parts shows benefits in all impact categories. For cables, infrastructure impacts are dominated by cable production, and recycling of cable materials does not always compensate for the other impacts generated at the end of life.


Electricity transmission Environmental impacts of energy systems Life cycle assessment Power lines and cables 

Supplementary material

11367_2011_335_MOESM1_ESM.doc (184 kb)
ESM 1DOC 184 kb


  1. ABB (2011) Environmental product declarations. Accessed Oct 2010
  2. BERR (2010) Renewable energy atlas. Accessed Sept 2010
  3. Blackett G, Savory E, Toy N, Parke GAR, Clarck M, Rabjohns B (2008) An evaluation of the environmental burdens of present and alternative materials used for electricity transmission. Build Environ 43:1326–1338CrossRefGoogle Scholar
  4. Bumby S, Druzhinina E, Feraldi R, Werthmann D, Geyer R, Sahl J (2010) Life cycle assessment of overhead and underground primary power distribution. Environ Sci Technol 44:5587–5593CrossRefGoogle Scholar
  5. Cigré (1996) Life cycle assessment on high voltage power cables. International Council on Large Electric Systems (Cigré), ParisGoogle Scholar
  6. Cigré (2004a) Life Cycle Assessment (LCA) for overhead lines. International Council on Large Electric Systems (Cigré), ParisGoogle Scholar
  7. Cigré (2004b) Electrical power supply using SF6 technology. International Council on Large Electric Systems (Cigré), ParisGoogle Scholar
  8. Ecoinvent Centre (2007a) Ecoinvent data v2.2, 2007. Swiss Centre for Life Cycle Inventories, SwitzerlandGoogle Scholar
  9. Ecoinvent Centre (2007b) Life cycle inventories of energy systems: results for current systems in Switzerland and other UCTE countries, Data v2.0, ecoinvent report no. 5. Ecoinvent Centre, St. GallenGoogle Scholar
  10. Eltra (1999a) LCA for transmission. Notat ELT 1999–528; Document number 57429, reference JCH/AFJ; Eltra, DenmarkGoogle Scholar
  11. Eltra (1999b) Ressourceoppgørelse for 150 kV luftledning; Doc. nr. 53452; reference: SDM/TN. Eltra, DenmarkGoogle Scholar
  12. Eltra(1999c) Ressourceoppgørelse for 400 kV luftledning; TL98-423d. Eltra, DenmarkGoogle Scholar
  13. Eltra (1999d) Ressourceoppgørelse for HVDC- luftledning; TL98-593b. Eltra, DenmarkGoogle Scholar
  14. Eltra (1999e) Ressourceoppgørelse for 132/150 kV oliekabel; Doc. nr. 50810; reference sdm/TN. Eltra, DenmarkGoogle Scholar
  15. Eltra (1999f) Ressourceoppgørelse for HVDC-kabel; Doc. nr. 56546; reference SDM/TN. Eltra, DenmarkGoogle Scholar
  16. EPRI (2010) Electrical Power Research Institute. Accessed July 2010
  17. European Commission—Joint Research Centre—Institute for Environment and Sustainability (2010) International Reference Life Cycle Data System (ILCD) handbook—general guide for life cycle assessment—detailed guidance, 1st edn. EUR 24708EN. Publications Office of the European Union, LuxembourgGoogle Scholar
  18. Gagnon L, Belanger C, Yohji U (2002) Life cycle assessment of electricity generation options: the status of research in 2001. Energ Pol 30(14):1267–1278CrossRefGoogle Scholar
  19. Gielen D (2008) Energy technology perspectives. OECD/IEA, ParisGoogle Scholar
  20. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint level. Ministry of VROM, The HagueGoogle Scholar
  21. Harrison GP, Maclean EN, Kalamanlis S, Ochoa L (2010) Life cycle assessment of the transmission network in Great Britain. Energ Pol 38(7):3622–3631CrossRefGoogle Scholar
  22. Jones C, McManus MC (2010) Life-cycle assessment of 11 kV electrical overhead lines and underground cables. J Clean Prod 18:1464–1477CrossRefGoogle Scholar
  23. Kempton W, Pimenta F, Veron DE, Colle B (2010) Electric power from offshore wind via synoptic-scale interconnection. Proc Natl Acad Sci U S A 107(16):7240–7245CrossRefGoogle Scholar
  24. Lenzen M (2008) Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energ Convers Manag 49(8):2178–2199CrossRefGoogle Scholar
  25. Lenzen M, Munksgaard J (2002) Energy and CO2 life cycle analyses of wind turbines—review and applications. Renew Energ 26(3):339–362CrossRefGoogle Scholar
  26. Martinez E, Sanz F, Pellegrini S et al (2009) Life cycle assessment of a 2-MW rated power wind turbine: CML method. Int J Life Cycle Assess 14(1):52–63CrossRefGoogle Scholar
  27. Negra B, Todorovic J, Ackermann T (2006) Loss evaluation of HVAC and HVDC transmission solution for large offshore wind farms. Elec Power Syst Res 76(11):916–927CrossRefGoogle Scholar
  28. Pettersen J, Hertwich E (2008) Critical review: life cycle inventory procedures for long-term release of metals. Environ Sci Technol 42(13):4639–4647CrossRefGoogle Scholar
  29. Pfister S, Saner D, Koehler A (2011) The environmental relevance of freshwater consumption in global power production. Int J Life Cycle Assess 16(6):580–591CrossRefGoogle Scholar
  30. Phumpradab K, Gheewala SH, Sagisaka M (2009) Life cycle assessment of natural gas power plants in Thailand. Int J Life Cycle Assess 14(4):354–363CrossRefGoogle Scholar
  31. Rebitzer et al (2004) Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis and applications. Environ Int 30(5):701–720CrossRefGoogle Scholar
  32. Schreiber A, Zapp P, Kuckshinrichs W (2009) Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture. Int J Life Cycle Assess 14(7):639–655CrossRefGoogle Scholar
  33. Vattenfall (1999) Vattenfall's life cycle studies of electricity. Vattenfall AB and Explicare AB, StockholmGoogle Scholar
  34. Weber CL, Jaramillo P, Marriot J (2010) Life cycle assessment and grid electricity: what do we know and what can we know? Environ Sci Technol 44(6):1895–1901CrossRefGoogle Scholar
  35. Weisser D (2007) A guide to life cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32(9):1543–1559CrossRefGoogle Scholar
  36. Worzyk T (2009) Submarine power cables: design, installation, repair, environmental aspects. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raquel Santos Jorge
    • 1
  • Troy R. Hawkins
    • 1
  • Edgar G. Hertwich
    • 1
  1. 1.Industrial Ecology Programme, Department of Energy and Process EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations