USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties

  • Andrew D. Henderson
  • Michael Z. Hauschild
  • Dik van de Meent
  • Mark A. J. Huijbregts
  • Henrik Fred Larsen
  • Manuele Margni
  • Thomas E. McKone
  • Jerome Payet
  • Ralph K. Rosenbaum
  • Olivier Jolliet
LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS (USEtox)

Abstract

Purpose

The USEtox model was developed in a scientific consensus process involving comparison of and harmonization between existing environmental multimedia fate models. USEtox quantitatively models the continuum from chemical emission to freshwater ecosystem toxicity via chemical-specific characterization factors (CFs) for Life Cycle Impact Assessment (LCIA). This work provides understanding of the key mechanisms and chemical parameters influencing fate in the environment and impact on aquatic ecosystems.

Materials and method

USEtox incorporates a matrix framework for multimedia modeling, allowing separation of fate, exposure, and ecotoxicity effects in the determination of an overall CF. Current best practices, such as incorporation of intermittent rain and effect factors (EF) based on substance toxicity across species, are implemented in the model. The USEtox database provides a dataset of over 3,000 organic chemicals, of which approximately 2,500 have freshwater EFs. Freshwater characterization factors for these substances, with a special focus on a subset of chemicals with characteristic properties, were analyzed to understand the contributions of fate, exposure, and effect on the overall CFs. The approach was based on theoretical interpretation of the multimedia model components as well as multidimensional graphical analysis.

Results and discussion

For direct emission of a substance to water, the EF strongly controls freshwater ecotoxicity, with a range of up to 10 orders of magnitude. In this release scenario, chemical-specific differences in environmental fate influence the CF for freshwater emissions by less than 2 orders of magnitude. However, for an emission to air or soil, the influence of the fate is more pronounced. Chemical partitioning properties between water, air, and soil may drive intermedia transfer, which may be limited by the often uncertain, media-specific degradation half-life. Intermedia transfer may be a function of landscape parameters as well; for example, direct transfer from air to freshwater is limited by the surface area of freshwater. Overall, these altered fate factors may decrease the CF up to 8 orders of magnitude.

Conclusions

This work brings new clarity to the relative contributions of fate and freshwater ecotoxicity to the calculation of CFs. In concert with the USEtox database, which provides the most extensive compilation of CFs to date, these findings enable those undertaking LCIA to understand and contextualize existing and newly calculated CFs.

Keywords

Characterization factors Fate modeling Freshwater ecotoxicity Life Cycle Impact Assessment Model comparison USEtox 

Supplementary material

11367_2011_294_MOESM1_ESM.doc (2.5 mb)
ESM 1(DOC 2574 kb)

References

  1. Aldenberg T, Jaworska JS, Traas TP (2002) Normal species sensitivity distributions and probabilistic ecological risk assessment. In: Posthuma L, Suter GW II, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, Boca Raton, pp 49–102Google Scholar
  2. Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23(10):2343–2355CrossRefGoogle Scholar
  3. Bennett DH, Margni M, McKone TE, Jolliet O (2002) Intake fraction for multimedia pollutants: A tool for life cycle analysis and comparative risk assessment. Risk Anal 22(5):905–918CrossRefGoogle Scholar
  4. Brandes LJ, Den Hollander HA, van de Meent D (1996) SimpleBox 2.0: a nested multimedia fate model for evaluating the environmental fate of chemicals. Report 719101 029, National Institute of Public Health and the Environment, BilthovenGoogle Scholar
  5. Diamond ML, Gandhi N, Adams WJ, Atherton J, Bhavsar SP, Bulle C, Campbell PGC, Dubreuil A, Fairbrother A, Farley K, Green A, Guinee J, Hauschild MZ, Huijbregts MAJ, Humbert S, Jensen KS, Jolliet O, Margni M, McGeer JC, Peijnenburg WJGM, Rosenbaum R, van de Meent D, Vijverdo MG (2010) The Clearwater consensus: the estimation of metal hazard in fresh water. Int J Life Cycle Assess 15(2):143–147CrossRefGoogle Scholar
  6. Dreyer LC, Niemann AL, Hauschild MZ (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99. Does it matter which one you choose? Int J Life Cycle Assess 8(4):191–200CrossRefGoogle Scholar
  7. Fenner K, Scheringer M, MacLeod M, Matthies M, McKone TE, Stroebe M, Beyer A, Bonnell M, Le Gall AC, Klasmeier J, Mackay D, van de Meent D, Pennington DW, Scharenberg B, Suzuki N, Wania F (2005) Comparing estimates of persistence and long-range transport potential among multimedia models. Environ Sci Technol 39(7):1932–1942CrossRefGoogle Scholar
  8. Forbes VE, Calow P (2002) Species sensitivity distribution revisited: a critical appraisal. Hum Ecol Risk Assess 8(3):473–492Google Scholar
  9. Franco A, Trapp S (2010) A multimedia activity model for ionizable compounds: validation study with 2,4-dichlorophenoxyacetic acid, aniline, and trimethoprim. Environ Toxicol Chem 29(4):789–799CrossRefGoogle Scholar
  10. Gandhi N, Diamond ML, van de Meent D, Huijbregts MAJ, Peijnenburg WGJM, Guinee J (2010) New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ Sci Technol 44(13):5195–5201CrossRefGoogle Scholar
  11. Hauschild MZ (2005) Assessing environmental impacts in a life cycle perspective. Environ Sci Technol 39(4):81A–88ACrossRefGoogle Scholar
  12. Hauschild MZ, Huijbregts M, Jolliet O, MacLeod M, Margni M, van de Meent D, Rosenbaum RK, McKone TE (2008) Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals: the search for harmony and parsimony. Environ Sci Technol 42(19):7032–7037CrossRefGoogle Scholar
  13. Haye S, Slaveykova VI, Payet J (2007) Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA). Chemosphere 68(8):1489–1496CrossRefGoogle Scholar
  14. Hertwich EG (2001) Intermittent rainfall in dynamic multimedia fate modeling. Environ Sci Technol 35:936–940CrossRefGoogle Scholar
  15. Huijbregts M, Margni M, van de Meent D, Jolliet O, Rosenbaum R, McKone TE, Hauschild MZ (2010) USEtox™ Chemical-specific database: organics. http://www.usetox.org. Accessed 4 Apr 2010
  16. Humbert S, Manneh R, Shaked S, Horvath A, Deschênes L, Jolliet O, Margni M (2009) Assessing regional intake fractions and human damage factors in North America. Sci Total Environ 407:4812–4820CrossRefGoogle Scholar
  17. Jolliet O, Hauschild MZ (2005) Modeling the influence of intermittent rain events on long-term fate and transport of organic air pollutants. Environ Sci Technol 39(12):4513–4522CrossRefGoogle Scholar
  18. Jolliet O, Rosenbaum R, Chapmann PM, McKone TE, Margni M, Scheringer M, van Straalen N, Wania F (2006) Establishing a framework for Life Cycle Toxicity Assessment: findings of the Lausanne review workshop. Int J Life Cycle Assess 11(3):209–212CrossRefGoogle Scholar
  19. Jolliet O, Shaked S, Friot D, Humbert S, Schwarzer S, Margni M (2008) Multicontinental long range intake fraction of POPS: importance of food exposure and food exports. Organohalogen Compd 70:1939–1941Google Scholar
  20. Larsen HF, Hauschild MZ (2007a) Evaluation of ecotoxicity effect indicators for use in LCIA. Int J Life Cycle Assess 12(1):24–33 (Erratum for p 32 in: Int J Life Cycle Assess 12(2):92)Google Scholar
  21. Larsen HF, Hauschild MZ (2007b) GM-troph—a low data demand ecotoxicity effect indicator for use in LCIA. Int J Life Cycle Assess 12(2):79–91CrossRefGoogle Scholar
  22. Ligthart T, Aboussouan L, van de Meent D, Schönnenbeck M, Hauschild MZ, Delbeke K, Struijs J, Russell A, Udo de Haes H, Atherton J, van Tilborg W, Karman Ch, Korenromp R, Sap G, Baukloh A, Dubreuil A, Adams W, Heijungs R, Jolliet O, de Koning A, Chapman P, Verdonck F, van der Loos R, Eikelboom R, Kuyper J (2004) Declaration of Apeldoorn on LCIA of non-ferrous metals. Abstract by Sonnemann G (2004). Int J Life Cycle Assess 9(5):334CrossRefGoogle Scholar
  23. Mackay D (2002) Multimedia environmental models: the fugacity approach. CRC Press, Boca RatonGoogle Scholar
  24. Margni M, Pennington DW, Bennett DH, Jolliet O (2004) Cyclic exchanges and level of coupling between environmental media: intermedia feedback in multimedia fate models. Environ Sci Technol 38:5450–5457CrossRefGoogle Scholar
  25. McKone TE, Bennett D, Maddalena R (2001) CalTOX 4.0 Technical support document, vol. 1. LBNL-47254. Lawrence Berkeley National Laboratory, BerkeleyGoogle Scholar
  26. McKone TE, Kyle AD, Jolliet O, Olsen SI, Hauschild MZ (2006) Dose-response modeling for Life Cycle Impact Assessment. Int J Life Cycle Assess 11(2):138–140Google Scholar
  27. Pant R, Van Hoof G, Schowanek D, Feijtel TCJ, De Koning A, Hauschild MZ, Olsen SI, Pennington DW, Rosenbaum RK (2004) Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment: insights from a detergent case study within OMNIITOX. Int J Life Cycle Assess 9(5):295–306CrossRefGoogle Scholar
  28. Payet J (2004) Assessing toxic impacts on aquatic ecosystems in life cycle assessment (LCA). Dissertation, Ecole Polytechnique Fédérale de Lausanne (EPFL): Lausanne, Switzerland. Also see Int J Life Cycle Assess 10(5):373Google Scholar
  29. Payet J, Jolliet O (2004) Comparative assessment of the toxic impact of metals on aquatic ecosystems: the AMI method. In: Dubreuil A (ed) Life Cycle Assessment of metals: issues and research directions. SETAC Press, Pensacola, pp 188–191Google Scholar
  30. Pennington DW, Payet J, Hauschild MZ (2004) Aquatic ecotoxicological indicators in life-cycle assessment. Environ Toxicol Chem 23(7):1796–1807CrossRefGoogle Scholar
  31. Pennington DW, Margni M, Amman C, Jolliet O (2005) Multimedia fate and human intake modeling: spatial versus non-spatial insights for chemical emissions in Western Europe. Environ Sci Technol 39(4):1119–1128CrossRefGoogle Scholar
  32. Pennington DW, Margni M, Payet J, Jolliet O (2006) Risk and regulatory hazard-based toxicological effect indicators in Life-Cycle Assessment (LCA). Hum Ecol Risk Assess 12(3):450–475CrossRefGoogle Scholar
  33. Pistocchi A (2008) A GIS-based approach for modeling the fate and transport of pollutants in Europe. Environ Sci Technol 42(10):3640–3647CrossRefGoogle Scholar
  34. Pistocchi A, Sarigiannis DA, Vizcaino P (2010) Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. Sci Total Environ 408(18):3817–3830CrossRefGoogle Scholar
  35. Rosenbaum R, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33(5):624–634CrossRefGoogle Scholar
  36. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Köhler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment. Int J Life Cycle Assess 13(7):532–546CrossRefGoogle Scholar
  37. Van Zelm R, Huijbregts MAJ, Harbers JV, Wintersen A, Struijs J, Posthuma L, van de Meent D (2007) Uncertainty in msPAF-based ecotoxicological freshwater effect factors for chemicals with a non-specific mode of action in life cycle impact assessment. Integr Environ Assess Manage 3(2):203–210CrossRefGoogle Scholar
  38. Van Zelm R, Huijbregts MAJ, van de Meent D (2009) USES-LCA 2.0—a global nested multi-media fate, exposure, and effects model. Int J Life Cycle Assess 14(3):282–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andrew D. Henderson
    • 1
  • Michael Z. Hauschild
    • 2
  • Dik van de Meent
    • 3
    • 4
  • Mark A. J. Huijbregts
    • 3
  • Henrik Fred Larsen
    • 2
  • Manuele Margni
    • 5
  • Thomas E. McKone
    • 6
  • Jerome Payet
    • 7
  • Ralph K. Rosenbaum
    • 2
  • Olivier Jolliet
    • 1
  1. 1.Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborUSA
  2. 2.Department of Management EngineeringTechnical University of DenmarkLyngbyDenmark
  3. 3.Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
  4. 4.National Institute of Public Health and the Environment (RIVM)BilthovenThe Netherlands
  5. 5.CIRAIG, École Polytechnique de MontréalMontrealCanada
  6. 6.University of California Berkeley, and Lawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.CyclecoAmberieuFrance

Personalised recommendations