Production and energetic utilization of wood from short rotation coppice—a life cycle assessment

  • Anne Roedl



Ambitious targets for the use of renewable energy have recently been set in the European Union. To reach these targets, a large share of future energy generation will be based on the use of woody biomass. Therefore, there is an increasing interest in the cultivation of fast-growing tree species on agricultural land outside forests. Intensive crop production is always considered to harm the environment. The study explores the environmental burdens of the cultivation of fast-growing tree species on agricultural land and their subsequent energetic conversion in comparison to the fossil reference energy system.


Life cycle assessment (LCA) methodology according to the ISO 14040 and 14044 is used. Input data were partly collected within the German joint research project AGROWOOD. Two utilization paths of short rotation poplar chips are analyzed: heat and power generation in a cogeneration plant and the production of Fischer–Tropsch (FT) diesel. Subsequently, the bioenergy systems are compared with their fossil references.

Results and discussion

The production and distribution of 1 oven dry tonne (odt) of short-rotation poplar chips require 432 MJ non-renewable energy. This equals an output–input ratio of 43:1, which includes all process steps from field preparation to road transport. Emissions of this energy use amount to a global warming potential of 38.4 kg CO2 eq odt-1, an acidification potential of 0.24 kg SO2 eq odt-1, and a eutrophication potential of 0.04 kg PO4 eq odt-1. The greatest reductions of environmental impacts can be achieved by substituting power from lignite with cogenerated power from short-rotation coppice (SRC). Compared with the average German power generation mix GWP and AP of power generation from short rotation poplar chips are lower by 97% and 44%, respectively, while eutrophication potential is about 26% higher. FT diesel made from short-rotation poplar chips has an 88% lower global warming potential and a 93% lower acidification potential than fossil diesel. But, the eutrophication potential of FT diesel is twice as high as of fossil diesel.


It was found that even intensively produced wood from SRC can reduce environmental burdens if it is used for biofuel instead of fossil fuel. The utilization of the same amount of short-rotation poplar chips for heat and power production causes fewer environmental impacts than its use for FT diesel.


AGROWOOD Biomass Energy balance Eutrophication potential Fischer–Tropsch diesel Fuel wood GWP (global warming potential) Renewable energy Short-rotation poplar 



The research was funded by German Federal Ministry of Education and Research (BMBF) and Johann Heinrich von Thünen-Institut, Federal Research Institute for Rural Areas, Forestry and Fisheries (vTI).


  1. Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17(3):675–691CrossRefGoogle Scholar
  2. Audsley E, Alber S, Clift R, Cowell S, Crettaz P, Gaillard G (1997) Harmonisation of environmental life cycle assessment for agriculture. European Commission, Brussels, AIR3-CT94-2028:1-107Google Scholar
  3. Baitz M, Binder M, Deimling S (2004) Vergleichende Ökobilanz von SunDiesel (Choren-Verfahren) und konventionellem Dieselkraftstoff. PE-Europe, Leinfelden-Echterding, GermanyGoogle Scholar
  4. Boelke B (2006) Schnellwachsende Baumarten auf landwirtschaftlichen Flächen. Leitfaden zur Erzeugung von Energieholz, Ministerium für Ernährung, Landwirtschaft, Forsten und Fischerei Mecklenburg-Vorpommern, SchwerinGoogle Scholar
  5. Börjesson P (1996) Energy analysis of biomass production and transportation. Biomass and Bioenergy 11(4):305–318CrossRefGoogle Scholar
  6. Brummack J (2008) Fremdenergiefreie Trocknung von Holzhackgut, in: Bornimer Agrartechnische Berichte, Heft 63, Potsdam-Bornim 2008, S. 5–20, Leibnitz-Institut für Agrartechnik Potsdam-Bornim e. V., Potsdam-Bornim, 2008, ISSN 0947-7314Google Scholar
  7. Carpentieri M, Corti A, Lombardi L (2005) Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Convers Manag 46(11–12):1790–1808CrossRefGoogle Scholar
  8. Choren (2009) Carbo-V process for producing SunDiesel. Information from the webpage of Choren Industries,
  9. Din En Iso (2006) Umweltmanagement-Ökobilanz-Grundsätze und Rahmenbedingungen (ISO 14040: 2006) und Anforderungen und Anleitungen (ISO 14044: 2006). Deutsches Institut für Normung, Beuth Verlag, BerlinGoogle Scholar
  10. Dubuisson X, Sintzoff I (1998) Energy and CO2 balances in different power generation routes using wood fuel from SRC. Biomass and Bioenergy 15(4/5):379–390CrossRefGoogle Scholar
  11. Edwards R, Larivé J-F, Mahieu V, Rouveirolles P (2008) Well-to-wheels analysis of future automotive fuels and powertrains in the European context. Version 2c, European Commission. Joint Research Centre, Ispra Italy. Available at: Accessed 22 Oct 2009
  12. European Commission (2008) Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. 23.01.2008, COM(2008) 19 finalGoogle Scholar
  13. Fiedler P, Schultze M, Sonntag H (2006) Bereitstellung von Dendromasse für die Versorgung von Biomassekraftwerken—Analyse am Beispiel des Standorts Elsterwerda. In: TFH Wildau, Wissenschaftliche Beiträge Heft 2006, News & Media Relations, Berlin, GermanyGoogle Scholar
  14. Finnveden G, Hauschild MZ, Ekvall T, Guinée JB, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21CrossRefGoogle Scholar
  15. Gasol CM, Gabarrell X, Anton A, Rigola M, Carrasco J, Ciria P, Rieradevall J (2009) LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario. Biomass and Bioenergy 33(1):119–129CrossRefGoogle Scholar
  16. Goglio P, Owende PMO (2009) A screening LCA of SRC willow (Salix sp.) feedstock production system for small-scale electricity generation. Biosystems Engineering 103(3):389–394CrossRefGoogle Scholar
  17. Grigal DF, Berguson WE (1998) Soil carbon changes associated with short-rotation systems. Biomass and Bioenergy 14(4):371–377CrossRefGoogle Scholar
  18. Guinée JB (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer, Dodrecht, The NetherlandsGoogle Scholar
  19. Guinée JB, Heijungs R, van der Voet E (2009) A greenhouse gas indicator for bioenergy: some theoretical issues with practical implications. Int J LCA 14(4):328–339Google Scholar
  20. Heller MC, Keoleian GA, Volk TA (2003) Life cycle assessment of a willow bioenergy cropping system. Biomass and Bioenergy 25(2):147–165Google Scholar
  21. Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manag 121(1–2):85–99CrossRefGoogle Scholar
  22. Jungbluth N, Frischknecht R, Faist Emmenegger M (2002) Ökobilanz für die Stromerzeugung aus Holzbrennstoffen und Altholz. Bundesamt für Energie, Bern, Switzerland, BFEGoogle Scholar
  23. Jungbluth N, Frischknecht R, Faist Emmenegger M, Steiner R, Tuchschmid M (2007) RENEW Renewable fuels for advanced powertrains. Life cycle impact assessment and interpretation. ESU-Services Ltd, Uster, Switzerland, Life Cycle Assessment of BtL-fuel productionGoogle Scholar
  24. Jungbluth N, Büsser S, Frischknecht R, Tuchschmid M (2008) Ökobilanz von Energieprodukten: life cycle assessment of biomass-to-iquid fuels, final report. ESU-services Ltd, Uster, SwitzerlandGoogle Scholar
  25. Jungmeier G, Spitzer J (2001) Greenhouse gas emissions of bioenergy from agriculture compared to fossil energy for heat and electricity supply. Nutri Cycl Agroecosyst 60(1–3):267–273CrossRefGoogle Scholar
  26. Kaltschmitt M, Hartman H (2001) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer Verlag, Berlin, GermanyGoogle Scholar
  27. Kauter D, Lewandowski I, Claupein W (2001) Pappeln in Kurzumtriebswirtschaft: Eigenschaften und Qualitätsmanagement bei der Festbrennstoffbereitstellung -Ein Überblick. Pflanzenbauwissenschaften 5(2):64–74Google Scholar
  28. Knust C (2007) Plantation of poplar varieties on a former agricultural site: Impact on nutrient and water balance. Master thesis University Göttingen, Faculty of Forest Science and Forest Ecology, Göttingen, GermanyGoogle Scholar
  29. KTBL (2006) Betriebsplanung in der Landwirtschaft 2006/07: Datensammlung. Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), 20. Auflage. Darmstadt, GermanyGoogle Scholar
  30. Lettens S, Muys B, Ceulemans R, Moons E, Garcia J, Coppin P (2003) Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production. Biomass and Bioenergy 24(3):179–197CrossRefGoogle Scholar
  31. Mantau U, Steierer F, Prins K, Hetsch S (2007) Wood resources availability and demands. Implications of renewable energy policies, presentation 07.10.2007, Geneva, SwitzerlandGoogle Scholar
  32. Matthews R (2001) Modelling of energy and carbon budgets of wood fuel coppice systems. Biomass and Bioenergy 21(1):1–19CrossRefGoogle Scholar
  33. Milá i Canals L, Wenk-Müller R, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchtel R, Gaillard G, Michelsen O, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J LCA 12(1):5–15CrossRefGoogle Scholar
  34. Ochs T, Duschl C, Seintsch B (2007) Struktur und Rohstoffbedarf der Holzwirtschaft. Teil I der Studie: "Regionalisierte Struktur- und Marktanalyse der 1. Verarbeitungsstufe der Holzwirtschaft“. Holz-Zentalblatt 133(10):269–271Google Scholar
  35. PE, LBP (1992–2008) GaBi 4 Software-system and databases for life cycle engineering. Stuttgart Echterdingen, GermanyGoogle Scholar
  36. Rabl A, Benoist A, Dron D, Peuportier B, Spadaro JV, Zoughaib A (2007) How to account for CO2 emissions from biomass in an LCA. Int J LCA 12(5):281CrossRefGoogle Scholar
  37. Rafaschieri A, Rapaccini M, Manfrida G (1999) Life cycle assessment of electricity production from poplar energy crops compared with conventional fossil fuels. Energy Convers Manag 40(14):1477–1493CrossRefGoogle Scholar
  38. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J LCA 13(5):374–388CrossRefGoogle Scholar
  39. Reinhardt G, Gärtner SO, Patyk A, Rettenmaier N (2006) Ökobilanzen zu BtL: Eine ökologische Einschätzung. IFEU-Institut für Energie- und Umweltforschung, Heidelberg, GermanyGoogle Scholar
  40. Rödl A (2008) Ökobilanzierung der Holzproduktion im Kurzumtrieb. Arbeitsbericht 03/2008, Johann Heinrich von Thünen Institut, Institut für Ökonomie der Forst- und Holzwirtschaft, Hamburg, GermanyGoogle Scholar
  41. Röhricht C, Ruscher K (2004) Anbauempfehlungen für schnellwachsende Baumarten. Sächsische Landesanstalt für Landwirtschaft, Leipzig, GermanyGoogle Scholar
  42. Rosenbaum R, Bachmann T, Swirsky Gold L, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Mergni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J LCA 13(7):532–546CrossRefGoogle Scholar
  43. Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122(3):325–339CrossRefGoogle Scholar
  44. Stadtwerke Elsterwerda (2007) Betriebsführung Biomasse-Heizkraftwerk Elsterwerda. 01.03.2007, Available at: Accessed 3 Jan 2007
  45. Werner F, Nebel B (2007) Wood & other renewable resources. Int J LCA 12(7):462–463CrossRefGoogle Scholar
  46. Zimmer B, Wegener G (1996) Stoff- und Energieflüsse vom Forst zum Sägewerk. Holz als Roh- und Werkstoff 54(4):217–223Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Johann Heinrich von Thünen-InstitutInstitute of Forest Based Sector Economics (OEF)HamburgGermany

Personalised recommendations