The International Journal of Life Cycle Assessment

, Volume 15, Issue 8, pp 794–805 | Cite as

Life cycle assessment of the average Spanish diet including human excretion

  • Ivan Muñoz
  • Llorenç Milà i Canals
  • Amadeo R. Fernández-Alba


Background, aim and scope

The aim of this work is to find out to what extent human excretion is relevant in the context of a Spaniard’s overall food intake. A case study dealing with the average Spanish diet is carried out, including the whole life cycle of food: agricultural and animal production, industrial processing, distribution and retail, home storage and cooking, solid waste management and human excretion.


An extensive literature review was carried out to obtain life cycle assessment (LCA) data for Spanish food products. Also, the Danish LCA Food database and other European literature sources were used, along with ecoinvent background data. Human excretion and wastewater treatment were accounted for with a specific model recently developed, which required calculating the average nutritional composition of the Spanish diet. Concerning life cycle impact assessment, only three impact categories, namely global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP), were assessed, along with primary energy use (PEU) as environmental indicator.


Food production clearly appears as the main hotspot in the Spanish diet. Human excretion, along with further wastewater treatment, is not a negligible process in EP and GWP, where it is the second most important source of emissions, with 17% of the overall emissions. However, if biogenic CO2 emissions are not taken into account, the contribution of human excretion to GWP becomes very small (3%). The contributions to AP (2%) and PEU (3%) are also very small.


The main limitation of this study is the lack of representative data to cover food production in Spain. Nevertheless, our total estimates for GWP and PEU per person per year are in accordance with previous studies, as well as the identification of animal food as a main source of environmental impacts. These studies achieve similar results without including human excretion, but concerning EP, there are no previous studies focusing on this impact category at the diet level.


Food production is the most important life cycle stage in the Spanish diet, especially meat and dairy products. Nevertheless, human excretion as a life cycle stage has been found to be important in EP due to the emissions of nutrients in treated sewage.

Recommendations and perspectives

These results show that excretion should not be overlooked in LCA studies dealing with diet shifts and studies aimed at identifying the life cycle hotspots of food products.


Carbon cycle Food Human excretion Life cycle assessment Nutrient cycle Wastewater treatment 


  1. Agència de Residus de Catalunya (2007) Programa de Gestió de Residus Municipals a Catalunya (PROGREMIC). Generalitat de Catalunya, Departament de Medi Ambient. (accessed 23/02/2010)
  2. Andersson K, Ohlsson T, Olsson P (1998) Screening life cycle assessment (LCA) of tomato ketchup: a case study. J Clean Prod 6(3–4):277–288CrossRefGoogle Scholar
  3. Antón A, Montero JI, Muñoz P, Castells F (2005) LCA and tomato production in Mediterranean greenhouses. Int J Agric Resour Gov Ecol 4(2):102–112Google Scholar
  4. Aranda A, Zabalza I, Scarpellini S (2005) Mejora de la ecoeficiencia del sector vitivinícola a través del Análisis de Ciclo de Vida de la producción del vino. In: Clemente G, Sanjuán N, Vivancos JL (eds) Análisis de Ciclo de Vida: aspectos metodológicos y casos prácticos. Ed. Universidad Politécnica de Valencia, SpainGoogle Scholar
  5. Blengini A, Busto M (2009) The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). J Environ Manage 90(3):1512–1522CrossRefGoogle Scholar
  6. Carlsson-Kanyama A (1998) Climate change and dietary choices—how can emissions of greenhouse gases from food consumption be reduced? Food Policy 23(3/4):277–293CrossRefGoogle Scholar
  7. Carlsson-Kanyama A, Boström-Carlsson K (2001) Energy use for cooking and other stages in the life cycle of food. A study of wheat, spaghetti, pasta, barley, rice, potatoes, couscous and mashed potatoes. Stockholms Universitet / Systemekologiochfoi. FMS report 160Google Scholar
  8. Carlsson-Kanyama A, Faist M (2000) Energy use in the food sector: a data survey. AFN report 291, Swedish Environmental Protection Agency, Stockholm, SwedenGoogle Scholar
  9. Carlsson-Kanyama A, Pipping Ekström M, Shanahan H (2003) Food and life cycle energy inputs: consequences of diet and ways to increase efficiency. Ecol Econ 44:293–307CrossRefGoogle Scholar
  10. Coltro L, Mourad AL, Oliveira PAPLV, Baddini JPOA, Kletecke RM (2006) Environmental profile of Brazilian green coffee. Int J Life Cycle Assess 11(1):16–21CrossRefGoogle Scholar
  11. Davis J, Sonesson U (2008) Environmental potential of grain legumes in meals. Life cycle assessment of meals with varying content of peas. Swedish Institute for Food and Biotechnology. SIK-rapport Nr 771 2008Google Scholar
  12. Davis J, Sonesson U, Baumgartner D U, Nemecek T (2010) Environmental impact of four meals with different protein sources: case studies in Spain and Sweden. Int J Life Cycle Ass, in pressGoogle Scholar
  13. DEFRA (2008) Greenhouse gas impacts of food retailing—project FO0405. (accessed 23/02/2010)
  14. DEFRA (2009) Scenario building to test and inform the development of a BSI method for assessing GHG emissions from food. Project FO0404. (accessed 23/02/2010)
  15. Diputación Foral de Gipuzkoa (2002) Plan Integral de Gestión de Residuos Urbanos de Gipuzkoa 2002-2016 (PIGRUG). (accessed 27 may 2009)
  16. Doka G (2003) Life cycle inventories of waste treatment services. Part IV Wastewater treatment. Final report ecoinvent 2000 No. 13, EMPA St. Gallen, Swiss Centre for Life Cycle Inventories, Duebendorf, SwitzerlandGoogle Scholar
  17. Dones R, Bauer C, Bolliger R, Burger B, Faist Emmenegger M, Frischknecht R, Heck T, Jungbluth N, Röder A (2007) Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Final report ecoinvent data v2.0, No. 6. Swiss Centre for Life Cycle Inventories, Dübendorf, CHGoogle Scholar
  18. Ercin AE, Aldaya MM, Hoekstra AY (2009) A pilot in corporate water footprint accounting and impact assessment: the water footprint of a sugar-containing carbonated beverage. UNESCO-IHE Institute for Water EducationGoogle Scholar
  19. Foster C, Green K, Bleda M, Dewick P, Evans B, Flynn A, Mylan J (2006) Environmental impacts of food production and consumption: a report to the Department for Environment, Food, and Rural Affairs. Manchester Business School, DEFRA, LondonGoogle Scholar
  20. Garnett T (2006) Fruit and vegetables & UK greenhouse gas emissions: exploring the relationship. Centre for Environmental Strategy, University of Surrey, Guildford, UK, Working paper produced as part of the work of the Food Climate Research NetworkGoogle Scholar
  21. Gazulla C, Raugei M, Fullana-i-Palmer P (2010) Taking a life cycle look at Crianza wine production in Spain: where are the bottlenecks?. Int J Life Cycle Assess, in pressGoogle Scholar
  22. Gleick PH, Cooley HS (2009) Energy implications of bottled water. Environ Res Lett 4:014009. doi:10.1088/1748-9326/4/1/014009 CrossRefGoogle Scholar
  23. Guinée J B et al (2002) Life cycle assessment. An operational guide to ISO standards. Volume 1, 2, 3. Centre of Environmental Science, Leiden University (CML), The NetherlandsGoogle Scholar
  24. Heller M, Keoleian G (2003) Assessing the sustainability of the US food system: a life cycle perspective. Agr Syst 76:1007–1041CrossRefGoogle Scholar
  25. Hospido A, Tyedmers P (2005) Life cycle environmental impacts of Spanish tuna fisheries. Fish Res 76:174–186CrossRefGoogle Scholar
  26. Hospido A, Moreira MT, Feijoo G (2003) Simplified life cycle assessment of Galician milk production. Int Dairy J 13:783–796CrossRefGoogle Scholar
  27. Hospido A, Moreira MT, Feijoo G (2005) Environmental analysis of beer production. Int J Agric Resour Gov Ecol 4(2):152–162Google Scholar
  28. Hospido A, Vazquez ME, Cuevas A, Feijoo G, Moreira MT (2006) Environmental assessment of canned tuna manufacture with a life-cycle perspective. Resour Conserv Recycl 47(1):56–72CrossRefGoogle Scholar
  29. Hospido A, Milà i Canals L, McLaren S, Truninger M, Edwards-Jones G, Clift R (2009) The role of seasonality in lettuce consumption: a case study of environmental and social aspects. Int J Life Cycle Assess 14:381–391CrossRefGoogle Scholar
  30. Humbert S, Loerincik Y, Rossi V, Margni M, Jolliet O (2009) Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). J Clean Prod 17:1351–1358CrossRefGoogle Scholar
  31. IDAE–Instituto para la Diversificación y el Ahorro Energético (2010) Electrodomésticos: ¿cuáles son los más eficientes?. (accessed 23/02/2010)
  32. Instituto Nacional de Estadística (2005) Cifras de población referidas a 01/01/2005. INEbase. (accessed 27 may 2009)
  33. Instituto Nacional de Estadística (2007) Indicadores Sociales de España 2006. Spain, MadridGoogle Scholar
  34. Instituto Nacional de Estadística (2007b) Encuesta sobre recogida y tratamiento de residuos urbanos 2005. INEbase. (accessed 27 may 2009)
  35. Instituto Nacional de Estadística (2008) Estadísticas e indicadores del aguaGoogle Scholar
  36. IPCC (2006) Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (Eds.). IGES, JapanGoogle Scholar
  37. Iribarren D, Moreira MT, Feijoo G (2010) Revisiting the Life Cycle Assessment of mussels from a sectorial perspective. J Cleaner Prod 18:101–111CrossRefGoogle Scholar
  38. Jungbluth N, Tietje O, Scholz RW (2000) Food purchases: impacts from the consumers’ point of view investigated with a modular LCA. Int J Life Cycle Ass 5(3):134–142CrossRefGoogle Scholar
  39. Jungbluth N, Chudacoff M, Dauriat A, Dinkel F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Spielmann M, Stettler C, Sutter J (2007) Life Cycle Inventories of Bioenergy. Final report ecoinvent data v2.0 No. 17. Swiss Centre for Life Cycle Inventories, Dübendorf, CHGoogle Scholar
  40. Kantor SL, Lipton K, Manchester A, Oliveira V (1997) Estimating and addressing America’s food losses. Food Review, January-April, 1997Google Scholar
  41. Kramer KJ, Moll HC, Nonhebel S, Wilting HC (1999) Greenhouse gas emissions related to Dutch food consumption. Energ Policy 27:203–216CrossRefGoogle Scholar
  42. Livsmedelsverket (1985) Svinnet i livsmedelshanteringen, Vår föda volym 37 Supplement 1. Losses in Food Handling (in Swedish)Google Scholar
  43. Martín-Peña G (1997) Tablas de composición de alimentos. Ed. Nutricia, Madrid, SpainGoogle Scholar
  44. Milà i Canals L, Muñoz I, McLaren S (2007) LCA methodology and modelling considerations for vegetable production and consumption. CES Working Papers, 02/07, Centre for Environmental Strategy, University of Surrey, UKGoogle Scholar
  45. Milà i Canals L, Muñoz I, Hospido A, Plassmann K, McLaren SJ (2008) Life cycle assessment (LCA) of domestic vs. imported vegetables. Case studies on broccoli, salad crops and green beans. CES Working Paper 01/08. Centre for Environmental Strategy, University of Surrey, UKGoogle Scholar
  46. Ministerio de Agricultura, Pesca y Alimentación (2006a) La alimentación en España. MadridGoogle Scholar
  47. Ministerio de Agricultura, Pesca y Alimentación (2006b) Anuario de Estadística Agroalimentaria 2006. MadridGoogle Scholar
  48. Ministerio de Medio Ambiente (2008a) Plan Nacional Integrado de Residuos (PNIR) 2008-2015, versión preliminar. MadridGoogle Scholar
  49. Ministerio de Medio Ambiente (2008b) Gestión de residuos sólidos urbanos 2005. (accessed 25/02/2010)
  50. Molero J (2006) Life cycle assessment (LCA) as a decision support tool (DST) for the ecoproduction of olive oil. TASK 3.3: implementation of life cycle inventory in Ribera Baja (Navarra, Spain). Fundación LEIA, Environment and Energy UnitGoogle Scholar
  51. Muñoz I, Milà i Canals L, Clift R, Doka G (2007) A simple model to include human excretion and wastewater treatment in life cycle assessment of food products. CES Working Paper 01/07Google Scholar
  52. Muñoz I, Milà i Canals L, Clift R (2008) Consider a spherical man: a simple model to include human excretion in life cycle assessment of food products. J Ind Ecol 12(4):521–538CrossRefGoogle Scholar
  53. Muñoz I, Milà i Canals Ll, Rodríguez A (2009) Relevance of human excretion in LCA of food products. Case study of the average Spanish diet. Proceedings of the 6th International Conference on LCA in the Agri-Food Sector—Towards a sustainable management of the Food chain. November 12–14, 2008, Zurich, SwitzerlandGoogle Scholar
  54. Nemecek T, Kägi T, Blaser S (2007) Life cycle inventories of agricultural production systems. Final report ecoinvent 2.0, Vol. 15. Swiss Centre for Life Cycle Inventories, Dübendorf, CHGoogle Scholar
  55. Nielsen P H, Nielsen A M, Weidema B P, Dalgaard R, Halberg N (2003) LCA food data base. Accessed 27 may 2009
  56. Nilsson K, Flysjö A, Davis J, Sim S, Unger N, Bell S (2010) Comparative life cycle assessment of margarine and butter consumed in the UK, Germany and France. Int J Life Cycle Assess, submittedGoogle Scholar
  57. Nijdam DS, Wilting HC, Goedkoop MJ, Madsen J (2005) Environmental load from Dutch private consumption—how much damage takes place abroad? J Ind Ecol 9(1–2):147–168Google Scholar
  58. Ntiamoah A, Afrane G (2008) Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. J Clean Prod 16:1735–1740CrossRefGoogle Scholar
  59. Núñez Y, Fermoso J, García N, Irusta R (2005) Comparative life cycle assessment of beef, pork and ostrich meat: a critical point of view. Int J Agric Resour Gov Ecol 4(2):140–151Google Scholar
  60. OSE–Observatorio de la Sostenibilidad en España (2009) Sostenibilidad en España 2009. Ed. Mundi-Prensa, MadridGoogle Scholar
  61. Pimentel D (1973) Food production and the energy crisis. Science 182(4111):443–449CrossRefGoogle Scholar
  62. Sanjuán N, Úbeda L, Clemente G, Mulet A (2005) LCA of integrated orange production in the Comunidad Valenciana (Spain). Int J Agric Resour Gov Ecol 4(2):163–177Google Scholar
  63. Santacana M, Pon J, Pon D, Arto I, Casanovas S (2008) Greenhouse gas emissions from a consumption perspective in a global economy—opportunities for the Mediterranean region. Sustainable consumption and production in the mediterranean, regional activity centre for cleaner production (CP/RAC). Annual Technical Publication 7:101–112Google Scholar
  64. Sonesson U, Janestad H, Raaholt B (2003) Energy for preparation and storing of food—models for calculation of energy use for cooking and cold storage in households. SIK-Rapport 709:1–56, Gothenburg, Sweden, SIKGoogle Scholar
  65. Sonesson U, Jönsson H, Mattsson B (2004) Postconsumption sewage treatment in environmental systems analysis of foods. A method for including potential eutrophication. J Ind Ecol 8(3):51–64CrossRefGoogle Scholar
  66. Tukker A, Huppes G, Guinée J, Heijungs R, de Koning A, van Oers L, Suh S, Geerken T, Van Holderbeke M, Jansen B, Nielsen P, Eder P, Delgado L (2006) Environmental Impact of Products (EIPRO). Analysis of the life cycle environmental impacts related to the final consumption of the EU-25. IPTS/ESTO project, Technical Report EUR 22284 EN, Seville, SpainGoogle Scholar
  67. Weidema BP (1993) Life Cycle Assessment of Food Products. Proceedings of the 1st European Invitational Expert Seminar on LCAs of Food Products. Technical University of Denmark, Lyngby, Denmark, pp 22–23Google Scholar
  68. Weidema BP, Wesnæs M, Hermansen J, Kristensen T, Halberg N (2008) Environmental improvement potentials of meat and dairy products. JRC Scientific and Technical ReportsGoogle Scholar
  69. Williams, AG, Pell E, Webb J, Tribe E, Evans D, Moorhouse E, Watkiss P (2008) Comparative life cycle assessment of food commodities procured for UK consumption through a diversity of supply chains. Final Report for Defra Project FO0103Google Scholar
  70. Zufia J, Arana L (2008) Life cycle assessment to eco-design food products: industrial cooked dish case study. J Cleaner Prod 16:1915–1921CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ivan Muñoz
    • 1
    • 5
  • Llorenç Milà i Canals
    • 2
  • Amadeo R. Fernández-Alba
    • 3
    • 4
  1. 1.Department of Hydrogeology and Analytical ChemistryUniversity of AlmeríaLa Cañada de San UrbanoSpain
  2. 2.UnileverSafety & Environmental Assurance CentreBedfordshireUK
  3. 3.Department of Hydrogeology and Analytical ChemistryUniversity of AlmeríaLa Cañada de San UrbanoSpain
  4. 4.Instituto Madrileño de Estudios Avanzados, IMDEA AguaParque Científico Tecnológico de la Universidad de Alcalá, Edificio ZYEAlcalá de HenaresSpain
  5. 5.UnileverSafety & Environmental Assurance CentreSharnbrookUK

Personalised recommendations