Assessing potential desertification environmental impact in life cycle assessment

Part 1: Methodological aspects
  • Montserrat NúñezEmail author
  • Bárbara Civit
  • Pere Muñoz
  • Alejandro Pablo Arena
  • Joan Rieradevall
  • Assumpció Antón


Background, aim and scope

Life cycle assessment (LCA) enables the objective assessment of global environmental burdens associated with the life cycle of a product or a production system. One of the main weaknesses of LCA is that, as yet, there is no scientific agreement on the assessment methods for land-use related impacts, which results in either the exclusion or the lack of assessment of local environmental impacts related to land use. The inclusion of the desertification impact in LCA studies of any human activity can be important in high-desertification risk regions.

Main features

This paper focuses on the development of a methodology for including the desertification environmental impact derived from land use in LCA studies. A set of variables to be measured in the life cycle inventory (LCI), their characterisation factors (CFs) and an impact assessment method for the life cycle impact assessment (LCIA) phase are suggested. The CFs were acquired using a geographical information system (GIS).


For the LCI stage it is necessary to register information on: (1) the four biophysical variables of aridity, erosion, aquifer overexploitation and fire risk, with a created scale of values; (2) the geographical location of the activity and (3) the spatial and temporal extension of the activity. For the CFs, the four LCI biophysical variables in (1) were measured for the main terrestrial natural regions (ecoregions) by means of GIS.


Using GIS, calculation of the CF for the aridity variable shows that 38% of the world area, in eight out of 15 existing ecoregions, is at risk of desertification. The most affected is the tropical/subtropical desert. The LCIA model has been developed to identify scenarios without desertification impact.


The developed method makes possible the inclusion of the desertification impact derived from land use in LCA studies, using data generally available to LCA users.

Recommendations and perspectives

While this LCIA model may be a simplified approach, it can be calibrated and improved for different case studies. The model proposed is suitable for assessing the desertification impact of any type of human activity and may be complemented with specific activity indicators, and although we have considered biophysical factors, the method can be extended to socio-economic vectors.


Aridity index Characterisation factors Desertification Geographical information system (GIS) Land use impacts Life cycle assessment (LCA) Life cycle impact assessment (LCIA) Life cycle inventory (LCI) 



This study was funded by AECI (Spanish International Cooperation Agency), needs for complementary actions, official announcements for inter-university cooperation programmes and scientific research, and project reference number C/6501/06: development of impact indicators characteristic of arid zones for life cycle assessment: desertification, erosion and water consumption. Dr. Josep Mas (Universitat de Girona) provided very useful information. Marta Borrós (Geographic Information System technician, at the Institute of Environmental Science and Technology—Universitat Autònoma de Barcelona, ICTA-UAB) and Cecilia Rubio (Geographic Information System technician, at the Laboratorio de Desertificación y Ordenamiento Territorial—IADIZA–CONICET, Mendoza) provided GIS support.


  1. Alcamo J, Henrich T, Rösch T (2000) World Water in 2025—Global modeling and scenario analysis for the World Commission on Water for the 21st Century. Kassel: Centre for Environmental System Research, University of Kassel, (last accessed date August 8, 2008)
  2. Audsley E (1997) Harmonisation of Environmental Life Cycle Assessment. Final Report Concerted action AIR3-CT94-2028, European Commission DG VI AgricultureGoogle Scholar
  3. Bailey RG (1996) Ecosystem geography. Springer, New YorkGoogle Scholar
  4. Bailey RG (1998) Ecoregions: the ecosystem geography of the oceans and continents. Springer, New YorkGoogle Scholar
  5. Bailey RG (2002) Eco-region based design for sustainability. Springer, New YorkGoogle Scholar
  6. Basic F, Kisic I, Mesic M, Nestroy O, Butorac A (2004) Tillage and crop management effects on soil erosion in central Croatia. Soil Till Res 78(2):197–206CrossRefGoogle Scholar
  7. Begon M, Harper JL, Townsend CR (1999) Ecología: individuos, poblaciones y comunidades. Omega, 3rd. edition, BarcelonaGoogle Scholar
  8. Bengtsson M, Carlson R, Molander S, Steen B (1998) An approach for handling geographical information in life cycle assessment using a relational database. J Hazard Mater 61(1–3):67–75CrossRefGoogle Scholar
  9. Blonk H, Lindeijer E, Broers J (1997) Towards a methodology for taking physical degradation of ecosystems into account in LCA. Int J Life Cycle Assess 2(2):91–98CrossRefGoogle Scholar
  10. Boellstorff D, Benito G (2005) Impacts of set-aside policy on the risk of soil erosion in central Spain. Agr Ecosyst Environ 107(2–3):231–243CrossRefGoogle Scholar
  11. Civit B (2009) Sostenibilidad ambiental. Desarrollo de indicadores para su aplicación en estudios de análisis de ciclo de vida en la región árida del centro-oeste argentino. Ph. D. Thesis, Universidad Nacional de Cuyo, MendozaGoogle Scholar
  12. Cowell SJ, Clift R (2000) A methodology for assessing soil quantity and quality in life cycle assessment. J Clean Prod 8:321–331CrossRefGoogle Scholar
  13. Cowell SJ, Lindeijer E (2000) Impacts on ecosystems due to land use: biodiversity, life support, and soil quality in life Cycle Assessment. In: Weidema B, Meeusen M (eds) Agricultural data for life cycle assessments. Agricultural Economics Research Institute, The Haugue, pp 80–87Google Scholar
  14. DESERTLINKS (2004) Desertification Indicator System for Mediterranean Europe (DIS4ME). European Commission, Contract EVK2-CT-2001-00109, (last accessed date August 5, 2008)
  15. EEA (1999) Groundwater quality and quantity in Europe. Technical report no. 22, European Environment Agency, CopenhagenGoogle Scholar
  16. EMWIS (2007) Mediterranean groundwater report. Technical report on groundwater management in the Mediterranean and the Water Framework Directive. Euro-Mediterranean Information System on know-how in the Water Sector, Mediterranean Groundwater Working Group (MED-EUWI WG on groundwater), (last accessed date May 20, 2008)
  17. FAO (2006) Global Forest Resources Assessment (FRA 2005). Food and Agriculture Organization of the United Nations, (last accessed date July 31, 2008)
  18. FAO (2007a) AQUASTAT online database, Land and Water Development Division. Food and Agriculture Organization of the United Nations, Rome, (last accessed date August 4, 2008)
  19. FAO (2007b) Fire management—global assessment 2006. FAO forestry paper 151, Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  20. FAO (2008) Technical Meeting of the National Correspondents to the Global Forest Resources Assessment (FRA 2010). Food and Agriculture Organization of the United Nations, Rome, 3–7 March 2008, (last accessed date July 31, 2008)
  21. Fischer G, van Velthuizen H, Nachtergaele F, Medow S (2000) Global Agro-ecological Zones (Global-AEZ). FAO/IIASAGoogle Scholar
  22. Folch R, Franquesa T, Camarasa JM (1984) Història Natural dels Països Catalans, Vegetació. Vol 7, Ed Enciclopèdia Catalana, SA, BarcelonaGoogle Scholar
  23. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition. Report I: characterisation. VROM, Den Haag, The NetherlandsGoogle Scholar
  24. Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes H (2001) An operational guide to the ISO-standards. Part 3: Scientific background. CML, Centre of Environmental Science, LeidenGoogle Scholar
  25. Guinée J, van Oers L, de Koning A, Tamis W (2006) Life cycle approaches for Conservation Agriculture. CML report 171, Institute of Environmental Sciences, Department of Industrial Ecology & Department of Environmental Biology, LeidenGoogle Scholar
  26. Heijungs R, Guinée JB, Huppes H, Lankreijer RM, Udo de Haes HA, Wegener Sleeswijk A, Ansems AMM, Eggels PG, van Duin R, Goede HP (1992) Environmental Life Cycle Assessment of Products—Guide and Backgrounds, Centre of Environmental Science (CML), LeidenGoogle Scholar
  27. ISO-14040 (2006) Environmental management—Life cycle assessment—Principles and framework. 14040, International Organisation for Standardisation ISO, GenevaGoogle Scholar
  28. ISO-14044 (2006) Environmental management—Life cycle assessment—Requirements and guidelines. 14044, International Organisation for Standardisation ISO, GenevaGoogle Scholar
  29. ISRIC (2008) Global Assessment of Human-induced Soil Degradation (GLASOD). International Soil Reference and Information Centre, (last accessed date July 12, 2008)
  30. Jäppinen E, Karttunen K, Ranta T (2008) Geographical Information System (GIS) and Life Cycle Assessment (LCA) methods combined for evaluation of biomass supply chain. 16th European Biomass Conference & Exhibition, Valencia (Spain), 2–6 June 2008Google Scholar
  31. Kirkby MJ, Jones RJA, Irvine B, Gobin A, Govers G, Cerdan O, Van Rompaey AJJ, Le Bissonais Y, Daroussin J, King D, Montanarella L, Grimm L, Vieillefont V, Puigdefabregas J, Boer M, Kosmas C, Yassoglou N, Tsara M, Mantel S, Van Lynden GJ, Huting J (2004) Pan-European Soil Erosion Risk Assessment: the PESERA Map, Version 1, October 2003. European Soil Bureau Research, Report No 16, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  32. Koellner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8(4):293–311CrossRefGoogle Scholar
  33. Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Part 1: an analytical framework for pure land occupation and land use change. Int J LCA 12(1):16–23CrossRefGoogle Scholar
  34. Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterisation factors for local species diversity in central Europe. Int J Life Cycle Assess 13(1):32–48CrossRefGoogle Scholar
  35. Mattsson B, Cederberg C, Blix L (2000) Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops. J Clean Prod 8(4):283–292CrossRefGoogle Scholar
  36. Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment in LCA. Int J Life Cycle Asssess 12(1):5–15CrossRefGoogle Scholar
  37. MIMAM (2005) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, Centro de Publicaciones, Secretaría General Técnica, (last accessed date June 5, 2008)
  38. MIMAM (2006) III Informe sobre el Programa de Acción Nacional contra la Desertificación, España. Ministerio de Medio Ambiente, Secretaría General para el Territorio y la Biodiversidad, Protección General para la Biodiversidad, MadridGoogle Scholar
  39. MiraMon® 6.1 (2008) Generalitat de Catalunya, Departament de Governació i Administracions PúbliquesGoogle Scholar
  40. Nelson RG (2002) Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—rainfall and wind-induced soil erosion methodology. Biomass Bioenerg 22(5):349–363CrossRefGoogle Scholar
  41. Oldeman LR, Hakkeling RTA, Sombroek WG (1990) World map of the human-induced soil degradation: an explanatory note. International Soil Reference and Information Centre, WageningenGoogle Scholar
  42. Olson JS, Watts JA, Allison LJ (1983) Carbon in Live Vegetation of Major World Ecosystems, Report ORNL-5862, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. The source of this data set as obtained by GRID is the US National Geophysical Data Center (NGDC), Boulder, Colorado, USAGoogle Scholar
  43. RDPH (1986) Real Decreto 84/1986, de 11 de abril, por el que se aprueba el Reglamento del Dominio Público Hidráulico, que desarrolla los Títulos Preliminar, I, IV, V, VI y VII de la Ley 29/1985, de 2 de agosto, de Aguas (BOE n°103, 30 April)Google Scholar
  44. Reich P, Eswaran H, Beinroth F (2001) Global dimensions of vulnerability to wind and water erosion. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Selected papers from the 10th International Soil Conservation Organization Meeting, May 24–29 1999, Perdue University and USDA-ARS National Soil Erosion Research Laboratory, pp 838–846Google Scholar
  45. Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16(18):1929–1942CrossRefGoogle Scholar
  46. Steen B, Ryding SO (1993) The EPS enviro-accounting method. An application of environmental accounting for evaluation and valuation of environmental impact in product design. AFR, StockholmGoogle Scholar
  47. Stone RP (2000) Universal Soil Loss Equation (USLE) Ministry of Agriculture, Food and Rural Affairs, Ontario, (last accessed date August 8, 2008)
  48. UNEP (2002) Data sets, GEO-3 Data Compendium. United Nations Environment Programme, (last accessed date August 2, 2008)
  49. United Nations (1994) United Nations Convention to Combat Desertification in Countries Experiencing serious Drought and/or Desertification, Particularly in AfricaGoogle Scholar
  50. Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk assessment in Europe. INRA, LuxembourgGoogle Scholar
  51. Wegener Sleeswijk A, Kleijn R, Meeusen-van Onna M.JG, Leneman H, Sengers HHWJM, Zeijts H van, Reus JAWA (1996) Application of LCA to Agricultural Products. CML report 130, Centre of Environmental Science, Leiden University (CML), Centre of Agriculture and Environment, Agricultural-Economic Institute (LEI-DLO), LeidenGoogle Scholar
  52. Weidema BP, Meeusen M (ed) (2000) Agricultural data for Life Cycle Assessments, 1. Agricultural Economics Research Institute, The HaugueGoogle Scholar
  53. Weidema BP, Mortensen B, Nielsen P, Hauschild M (1996) Elements of an impact assessment of wheat production. Institute for Product DevelopmentGoogle Scholar
  54. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. Agricultural Handbook, no. 537, United States Department of AgricultureGoogle Scholar
  55. WRI (2007) Water resources and freshwater ecosystems, Searchable database World Resources Institute, (last accessed date May 27, 2008)

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Montserrat Núñez
    • 1
    Email author
  • Bárbara Civit
    • 3
  • Pere Muñoz
    • 1
  • Alejandro Pablo Arena
    • 3
  • Joan Rieradevall
    • 4
    • 5
  • Assumpció Antón
    • 2
  1. 1.IRTA, SosteniPrABarcelonaSpain
  2. 2.SosteniPrA (UAB-IRTA)BarcelonaSpain
  3. 3.Universidad Tecnológica Nacional—Facultad Regional Mendoza/CONICETMendozaArgentina
  4. 4.ICTA, SosteniPrA. Institute of Environmental Science and Technology (ICTA)Universitat Autònoma de Barcelona (UAB)BarcelonaSpain
  5. 5.Chemical Engineering DepartmentUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain

Personalised recommendations