Applying voting rules to panel-based decision making in LCA

  • Christoph Koffler
  • Liselotte Schebek
  • Stephan Krinke


Background, aim, and scope

Cross-category weighting is one possible way to facilitate internal decision making when dealing with ambiguous impact assessment results, with simple additive weighting being a commonly used method. Yet, the question as to whether the methods applied today can, in fact, identify the most “environmentally friendly” alternative from a group perspective remains unanswered. The aim of this paper is to propose a new method for group decision making that ensures the effective identification of the most preferable alternative.

Materials and methods

Common approaches to deduce a single set of weighting factors for application in a group decision situation (e.g., arithmetic mean, consensus) are discussed based on simple mathematics, empirical data, and thought experiments. After proposing an extended definition for “effectiveness” in group decision making, the paper recommends the use of social choice theory whose main focus is to identify the most preferable alternative based on individuals’ rankings of alternatives. The procedure is further supplemented by a Monte Carlo analysis to facilitate the assessment of the result’s robustness.


The general feasibility of the method is demonstrated. It generates a complete ranking of alternatives, which does not contain cardinal single scores. In terms of effectiveness, the mathematical structure of the procedure ensures the eligibility for compromise of the group decision proposal. The sensitivity analysis supports the decision makers in understanding the robustness of the proposed group ranking.


The method is based upon an extended definition of effectiveness which acknowledges the eligibility for compromise as the core requirement in group decision contexts. It is shown that multi-attribute decision-making (MADM) methods in use in life cycle assessment (LCA) today do not necessarily meet this requirement because of their mathematical structure. Further research should focus on empirical proof that the generated group results are indeed more eligible for compromise than results generated by current methods that utilize an averaged group weighting set. This is closely related to the question considering under which mathematical constraints it is even possible to generate an essentially different result.


The paper describes a new multi-attribute group decision support system (MGDSS) for the identification of the most preferable alternative(s) for use in panel-based LCA studies. The main novelty is that it refrains from deducing a single set of weighting factors which is supposed to represent the panel as a whole. Instead, it applies voting rules that stem from social choice theory. Because of its mathematical structure, the procedure is deemed superior to common approaches in terms of its effectiveness.

Recommendations and perspectives

The described method may be recommended for use in internal, panel-based LCA studies. In addition, the basic approach of the method—the combination of MADM methods with social choice theory—can be recommended for use in all those situations where multi-attribute decisions are to be made in a group context.


Group decision support system Multi-attribute decision making Panel methods Social choice theory Voting Weighting 


  1. Benoit V, Rousseaux P (2003) Aid for aggregating the impacts in life cycle assessment. Int J Life Cycle Assess 8:74–82Google Scholar
  2. Bovea M-D, Cabello R, Querol D (2007a) Comparative life cycle assessment of commonly used refrigerants in commercial refrigeration systems. Int J Life Cycle Assess 12:299–307CrossRefGoogle Scholar
  3. Bovea M-D, Saura Ú, Ferrero JL, Giner J (2007b) Cradle-to-gate study of red clay for use in the ceramic industry. Int J Life Cycle Assess 12:439–447CrossRefGoogle Scholar
  4. Braunschweig A, Förster R, Hofstetter P, Müller-Wenk R (1996) Developments on LCA valuation. Institut für Wirtschaft und Ökologie, Universität St. Gallen (IWÖ-HSG), St. GallenGoogle Scholar
  5. Condorcet Nd (1785) Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Reprint: Chelsea Publisher Co, New York, 1980Google Scholar
  6. de Beaufort-Langeveld A, van den Berg NW, Haydock R, ten Houten M, Kotaji S, Oerlemans E, Schmidt W-P, Stranddorf HK, Weidenhaupt A (1997) Simplifying LCA—just a cut? Final report of the SETAC Europe LCA screening and streamlining working group. In: Christiansen K (ed) SETAC, BrusselsGoogle Scholar
  7. Elkington J (2002) Cannibals with forks: the triple bottom line of 21st century business. Capstone, Oxford XIV, 410 S ppGoogle Scholar
  8. Finnveden G, Hofstetter P, Bare JC, Basson L, Ciroth A, Mettier T, Seppälä J, Johansson J, Norris GA, Volkwein S (2002) Normalisation, grouping, and weighting in life-cycle assessment. In: UdodeHaes HA et al (ed) Life cycle impact assessment—striving towards best practice. SETAC, PensacolaGoogle Scholar
  9. Finnveden G, Eldh P, Johansson J (2006) Weighting in LCA based on ecotaxes—development of a mid-point method and experiences from case studies. Int J Life Cycle Assess 11:81–88CrossRefGoogle Scholar
  10. Fishburn PC (1967) Additive utilities with incomplete product set: applications to priorities and assignments. ORSA Publication, BaltimoreGoogle Scholar
  11. Garrido N, Alvarez del Castillo MD (2007) Environmental evaluation of single-use and reusable cups. Int J Life Cycle Assess 12:252–256CrossRefGoogle Scholar
  12. Gehrlein WV (1998) The sensitivity of weight selection on the condorcet efficiency of weighted scoring rules. Soc Choice Welfare 15:351–358CrossRefGoogle Scholar
  13. Geldermann J (2006) Mehrzielentscheidungen in der industriellen Produktion. Universitätsverlag KarlsruheGoogle Scholar
  14. Goedkoop M, Spriensma R (2000) Communicating LCA results—pragmatic tools and methods. Int Conf and exhibition on life cycle assessment—tools for sustainability. American Center for Life Cycle Assessment (ACLCA), ArlingtonGoogle Scholar
  15. Goedkoop M, Spriensma R (2001) The eco-indicator 99—a damage oriented method for life cycle impact assessment. Methodology report. Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, Den HaagGoogle Scholar
  16. Green-Armytage J (2004) Cardinal-weighted pairwise comparison. Voting Matt 19:10–17Google Scholar
  17. Güereca LP, Agell N, Gassó S, Baldasano JM (2007) Fuzzy approach to life cycle assessment—an application for biowaste management systems. Int J Life Cycle Assess 12:488–496CrossRefGoogle Scholar
  18. Hertwich EG, Hammitt JK (2001) A decision-analytic framework for impact assessment, part I—LCA and decision analysis. Int J Life Cycle Assess 6:5–12Google Scholar
  19. Hofstetter P (1996) Towards a structured aggregation procedure. In: Braunschweig A, Förster R, Hofstetter P, Müller-Wenk R (eds) Development in LCA valuation. Institut für Wirtschaft und Ökologie, Eidgenössische Technische Hochschule (ETH), ZurichGoogle Scholar
  20. Hwang C-L, Lin M-J (1987) Group decision making under multiple criteria: methods and applications. Lecture notes in economics and mathematical systems 281. Springer-VerlagGoogle Scholar
  21. Hwang C-L, Yoon K (1981) Multiple attribute decision making: methods and applications—a state-of-the-art-survey. Lecture notes in economics and mathematical systems 186. Springer-Verlag, X, 259 ppGoogle Scholar
  22. International Organization for Standardization (2006) ISO 14040: Environmental management—life cycle assessment—principles and framework. ISO, GenevaGoogle Scholar
  23. Johnson PE, Stahl S (2006) Understanding modern mathematics. Jones & Bartlett Publishers, SudburyGoogle Scholar
  24. Kicherer A, Schaltegger S, Tschochohei H, Ferreira Pozo B (2007) Eco-efficiency—combining life cycle assessment and life cycle costs via normalization. Int J Life Cycle Assess 12:537–543CrossRefGoogle Scholar
  25. Koffler C (2007) Automobile Produkt-Ökobilanzierung. Institut WAR—Institut für Wasserversorgung und Grundwasserschutz, Abwassertechnik, Abfalltechnik, Industrielle Stoffkreisläufe, Umwelt- und Raumplanung. Technische Universität DarmstadtGoogle Scholar
  26. Kurrild-Klitgaard P (2001) An empirical example of the condorcet paradox of voting in a large electorate. Public Choice 107:135–145CrossRefGoogle Scholar
  27. Lassaux S, Renzoni R, Germain A (2007) Life cycle assessment of water from the pumping station to the wastewater treatment plant. Int J Life Cycle Assess 12:118–126CrossRefGoogle Scholar
  28. Lundie S (1999) Ökobilanzierung und Entscheidungstheorie—praxisorientierte Produktbewertung auf der Basis gesellschaftlicher Werthaltungen. Springer-VerlagGoogle Scholar
  29. Lundie S, Huppes G (1999) Product Assessment based on a range of societal preferences, global competitiveness through cleaner production. Australian Cleaner Production Association (ACPA), Brisbane, pp 441–451Google Scholar
  30. Meskanen T, Nurmi H (2005) Measuring distance from consensus under various formulations of the social choice problem. Group Decision and Negotiation (GDN), ViennaGoogle Scholar
  31. Meskanen T, Nurmi H (2006) Distance from consensus: a theme and variations, mathematics and democracy. Springer-VerlagGoogle Scholar
  32. Mettier T, Scholz RW, Tietje O (2006) Measuring preferences on environmental damages in LCIA. Int J Life Cycle Assess 11:394–402CrossRefGoogle Scholar
  33. Miller GA (1967) The magic number seven, plus or minus two: some limits on our capacity for processing information. In: Alexis M, Wilson CZ (eds) Organizational decision making. Prentice-HallGoogle Scholar
  34. Perzon M, Johansson K, Fröling M (2007) Life cycle assessment of district heat distribution in suburban areas using PEX pipes insulated with expanded polystyrene. Int J Life Cycle Assess 12:317–327CrossRefGoogle Scholar
  35. Rex ELC, Baumann H (2007) Individual adaptation of industry LCA practice—results from two case studies in the Swedish forestry products industry. Int J Life Cycle Assess 12:266–271CrossRefGoogle Scholar
  36. Schmidt W-P, Sullivan JL (2002) Weighting in life cycle assessments in a global context. Int J Life Cycle Assess 7:5–10Google Scholar
  37. Schuh H (2001) Entscheidungsverfahren zur Umsetzung einer nachhaltigen Entwicklung. In: Betriebswirtschaftslehre F (ed) Fakultät Wirtschaftswissenschaften, Technische Universität DresdenGoogle Scholar
  38. Schulze M (2003) A new monotonic and clone-independent single-winner election method. Voting Matt 17:9–19Google Scholar
  39. Schulze M (2008) A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method (draft)Google Scholar
  40. Seppälä J, Basson L, Norris GA (2002) Decision analysis frameworks for life-cycle impact assessment. J Ind Ecol 5:45–68CrossRefGoogle Scholar
  41. Soares RS, Toffoletto L, Deschenes L (2005) Development of weighting factors in the context of LCIA. J Cleaner Prod 14:649–660CrossRefGoogle Scholar
  42. Stahl B (1999) Methodenvergleich und Methodenentwicklung zur Lösung der Bewertungsproblematik in produktbezogenen Ökobilanzen. DVS, Digitaler Vervielfältigungs- und Verl.-Service, Frankfurt am MainGoogle Scholar
  43. Steen BA (2006) Describing values in relation to choices in LCA. Int J Life Cycle Assess 11:277–283CrossRefGoogle Scholar
  44. Tangian AS (2000) Unlikelihood of Condorcet’s paradox in a large society. Soc Choice Welf 17:337–365CrossRefGoogle Scholar
  45. Tideman TN (1985) Investigating the probability of a voting cycle when the electorate is large. Econ Lett 17:23–25CrossRefGoogle Scholar
  46. Tideman TN (1987) Independence of clones as a criterion for voting rules. Soc Choice Welf 4:185–206CrossRefGoogle Scholar
  47. Vandercruyssen D (1999) Analysis of voting procedures in one-seat elections—Condorcet efficiency and Borda efficiency. In: Studies CfE (ed) Department of Economics, Katholieke Universiteit LeuvenGoogle Scholar
  48. Vetschera R (1991) Entscheidungsunterstützende Systeme für Gruppen—ein rückkopplungsorientierter Ansatz. Physica-Verlag, HeidelbergGoogle Scholar
  49. Yusoff S, Hansen SB (2007) Feasibility study of performing a life cycle assessment on crude palm oil production in Malaysia. Int J Life Cycle Assess 12:50–58CrossRefGoogle Scholar
  50. Zavist TM, Tideman TN (1989) Complete independence of clones in the ranked pairs rule. Soc Choice Welf 6:167–173CrossRefGoogle Scholar
  51. Zhang K (2004) Entwicklung eines integrierten multikriteriellen Gruppenentscheidungsunterstützungssystems (MGDSS). Shaker Verlag, AachenGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Christoph Koffler
    • 1
  • Liselotte Schebek
    • 2
  • Stephan Krinke
    • 1
  1. 1.Volkswagen AG, Environmental Affairs ProductWolfsburgGermany
  2. 2.Forschungszentrum Karlsruhe, Institute for Technology Assessment and System Analysis, Department of Technology-Induced Material FlowsEggenstein-LeopoldshafenGermany

Personalised recommendations