AGE

, 20:91 | Cite as

Exercise and oxidative stress: Sources of free radicals and their impact on antioxidant systems

  • Li Li Ji
  • Steve Leichtweis
Article

Abstract

Strenuous exercise is characterized by increased oxygen consumption and the disturbance between intracellular pro-oxidant and antioxidant homeostasis. At lease three biochemical pathways (i.e., mitochondrial electron transport chain, xanthine oxidase, and polymorphoneutrophil) have been identified as potential sources of intracellular free radical generation during exercise. These deleterious reactive oxygen species pose a serious threat to the cellular antioxidant defense system, such as diminished reserves of antioxidant vitamins and glutathione. However, enzymatic and non-enzymatic antioxidants have demonstrated great versitility and adaptability in response to acute and chronic exercise. The delicate balance between pro-oxidants and antioxidants suggests that supplementation with antioxidants may be desirable for physically active individuals under certain physiological conditions by providing a larger protective margin.

Key words

Antioxidants Exercise Free radicals Oxidative stress Vitamins 

References

  1. 1.
    Halliwell, B., and Gutteridge, J.M.C.: Free Radicals in Biology and Medicine, 2nd ed. Oxford, Clarendon Press, 1989.Google Scholar
  2. 2.
    Ames, B.N., Shigenaga, M.K., and Hagen, T.M.: Mitochondrial decay in aging. Biochem. Biophys. Acta, 1271: 165–70, 1995.PubMedGoogle Scholar
  3. 3.
    Cannon, J.G., and Blumberg, J.B.: Acute phase immune responses in exercise, in Exercise and Oxygen Toxicity, edited by Sen, C.K., Packer, L., Hanninen, O. New York, Elsevier Science, 1994, pp. 447–79.Google Scholar
  4. 4.
    Yu, B.P.: Cellular defenses against damage from reactive oxygen species. Physiol. Rev., 74: 139–62, 1994.PubMedGoogle Scholar
  5. 5.
    Harman, D.: Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 11: 298–300, 1956.PubMedGoogle Scholar
  6. 6.
    Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 527–605, 1979.PubMedGoogle Scholar
  7. 7.
    Ji, L.L., and Leeuwenburgh, C.: Glutathione and exercise, in Pharmacology in Exercise and Sports, edited by Somani, S. New York, CRC Press, 1996, pp. 97–123.Google Scholar
  8. 8.
    Meydani, M., and Evans, W.J.: Free radicals, exercise, and aging, in Free Radical in Aging, edited by Yu, B.P. Boca Raton, CRC Press, 1993, pp. 183–204.Google Scholar
  9. 9.
    Dillard, C.J.:, Litov, R.E., Savin, W.M., Dumclin E.E., and Tapple, A.L.: Effect of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. 0J. Appl. Physiol., 45: 927–32, 1978.Google Scholar
  10. 10.
    Salminen, A., and Vihko, V.: Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiol. Scand., 117: 109–13, 1983.PubMedGoogle Scholar
  11. 11.
    Jenkins, R.R.: Free radical chemistry: relationship to exercise. Sport Med., 5: 156–70, 1988.Google Scholar
  12. 12.
    Sjodin, B., Westing, H., and Apple, S.: Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med., 10: 236–54, 1990.PubMedCrossRefGoogle Scholar
  13. 13.
    Ji, L.L.: Exercise and oxidative stress: role of the cellular antioxidant systems, in Exercise Sport Science Reviews, edited by Holloszy, J.O. Baltimore, Williams & Wilkins, 1995, pp. 135–66.Google Scholar
  14. 14.
    Sen, C.K.: Oxidants and antioxidants in exercise. J. Appl. Physiol. 79: 675–86, 1995.PubMedGoogle Scholar
  15. 15.
    Davies, K.J.A., Quintanilha, T.A., Brooks, G.A., and Packer, L.: Free radical and tissue damage produced by exercise. Biochem. Biophys. Res. Commun., 107: 1198–205, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Salo, D.C., Donovan, C.M., and Davies, K.J.A.: HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic. Biol. Med., 11: 239–46, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar, C.T., Reddy, V.K., Prasad, M., Thyagaraju, K., and Reddanna, P.: Dietary supplementation of vitamin E protects heart tissue from exercise-induced oxidative stress. Mol. Cell. Biochem., 111: 109–15, 1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Somani, S.M., and Arroyo, C.M.: Exercise training generates ascorbate free radical in rat heart. Ind. J. Physiol. Pharmacol., 39: 323–9, 1995.Google Scholar
  19. 19.
    Jackson, M.J., Edwards, R.H.T., and Symons M.C.R.: Electron spin resonance studies of intact mammalian skeletal muscle. Biochem. Biophys. Acta, 847: 185–90, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Reid, M.B., Stokic, D.S., Koch, S.M., Khawli, F.A., Lois, A.A.: N-acetylcysteine inhibits muscle fatigue in humans. J. Clin. Invest., 94: 2468–74, 1994PubMedCrossRefGoogle Scholar
  21. 21.
    Ji, L.L., and Mitchell, E.W.: Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem. Pharmacol., 47: 877–85, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Ji, L.L., Stratman, F.W., and Lardy, H.A.: Enzymatic down regulation with exercise in rat skeletal muscle. Arch. Biochem. Biophys., 263: 137–49, 1988.PubMedCrossRefGoogle Scholar
  23. 23.
    Chandwaney, R., and Ji, L.L. Exercise training attenuates muscle mitochondrial damage by oxygen free radicals. Med Sci. Sports Exerc., 24: S17, 1992.Google Scholar
  24. 24.
    Leichtweis, S., Leeuwenburgh, C., Fiebig, R., Parmelee, D., Yu, X.X., and Ji, L.L.: Rigorous swim training deteriorates mitochondrial function in rat heart. Med Sci. Sports Exerc., 26: S69, 1994.Google Scholar
  25. 25.
    Higuchi, M., Cartier, L.J., Chen, M., and Holloszy, J.O.: Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J.Gerontol., 40: 281–6, 1985.PubMedCrossRefGoogle Scholar
  26. 26.
    Ji, L.L., Stratman, F.W., and Lardy, H.A.: Antioxidant enzyme systems in rat liver, and skeletal muscle: influences of selenium deficiency, chronic training and acute exercise. Arch. Biochem. Biophys., 263: 150–60, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Alessio, H.M., and Goldfarb, A.H.: MDA content increases in fast-and slow-twitch skeletal muscle with intensity of exercise in a rat. Am. J. Physiol., 255: C874–7, 1988.PubMedGoogle Scholar
  28. 28.
    Kanter, M.M., Nolte, L.A., and Holloszy, J.O.: Effect of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J. Appl. Physiol., 74: 965–9, 1993.PubMedGoogle Scholar
  29. 29.
    Ji, L.L., Fu, R.G., and Mitchell, E.: Glutathione and antioxidant enzyme in skeletal muscle: effect of fiber type and exercise intensity. J. Appl. Physiol., 73: 1854–9, 1992.PubMedGoogle Scholar
  30. 30.
    Pincemail, J., Camus, G., Roesgen, A., Dreezen, E., Bertrand, Y., Lismonde, M., Deby-Dupont, G., and Deby, C.: Exercise induces pentane production and neutrophil activation in humans: effect of propanolol. Eur. J. Appl. Physiol. Occ. Physiol., 61: 319–22, 1990.CrossRefGoogle Scholar
  31. 31.
    Simpson, P.J., and Lucchesi, B.R.: Free radicals and myocardial ischemia and reperfusion injury. J. Lab: Clin. Med., 19: 1195–206, 1987.Google Scholar
  32. 32.
    Downey, J.M.: Free radicals and their involvement during long-term myocardial ischemia-reperfusion. Annu. Rev. Physiol., 52: 487–504, 1990.PubMedCrossRefGoogle Scholar
  33. 33.
    Kuppasamy, P., and Zweier, J.L.: Characterization of free radical generation by xanthine oxidase: evidence for hydroxyl radical generation. J. Biol. Chem., 264: 9880–4, 1989.Google Scholar
  34. 34.
    Hearse, D.J., Manning, A.S., Downey, J.M., and Yellon, D.M.: Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol. Scand., 548: 65–78, 1986.Google Scholar
  35. 35.
    Hellsten, Y.: Xanthine dehydrogenase and purine metabolism in man: with special reference to exercise. Acta Physiol. Scand., 621: 1–73, 1994.Google Scholar
  36. 36.
    Norman, B., Sovelli, A., Kaijser, L., and Jansson, E.: ATP breakdown products in human muscle during prolonged exercise to exhaustion. Clin. Physiol., 7: 503–10, 1987.PubMedGoogle Scholar
  37. 37.
    Hellsten-Westing, Y., Balsom, P.D., Norman, B., and Sjodin, B.: The effect of high-intensity training on purine metabolism in man. Acta Physiol. Scand., 149: 405–12, 1993.PubMedGoogle Scholar
  38. 38.
    Sahlin, K., Ekberg, K., and Cizinsky, S.: Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol. Scand., 142: 273–81, 1991.Google Scholar
  39. 39.
    Radak, Z., Asano, K., Inoue, M., Kizaki, T., Oh-ishi, S., Suzuki, K., Taniguchi, N., and Ohno, H.: Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J. Appl. Physiol., 79: 129–35, 1995.PubMedGoogle Scholar
  40. 40.
    Radak, Z., Asano, K., Inoue, M., Kizaki, T., Ohishi, S., Suzuki, K., Taniguchi, N., and Ohno, H.: Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. Eur. J. Appl. Physiol. Occ. Physiol., 72: 189–94, 1996.CrossRefGoogle Scholar
  41. 41.
    Rasanen, L.A., Wiitanen, P.A.S., Lilius, E.M., Hyyppa, S., and Poso, A.R.: Accumulation of uric acid in plasma after repeated bouts of exercise in the horse. Comp. Biochem. Physiol., 114B: 139–44, 1996.Google Scholar
  42. 42.
    Hellsten, Y., Hansson, H.A., Johnson, L., Frandsen, U., and Sjodin, B.: Increased expression of xanthine oxidase acid insulinlike growth factor (IGF-1) immunoreactivity in skeletal muscle after strenuous exercise in humans. Acta Physiol. Scand., 157: 191–7, 1996.PubMedCrossRefGoogle Scholar
  43. 43.
    Pyne, D.B.: Regulation of neutrophil function during exercise. Sports Med., 17: 245–58, 1994.PubMedGoogle Scholar
  44. 44.
    Petrone, W.F., English, D.K., Wong, K., and McCord, J.M.: Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. USA, 77: 1159–63, 1980.PubMedGoogle Scholar
  45. 45.
    Meydani, M., Evans, W., Handelman, G., Fielding, R.A., Meydani, S.N., Fiatarone, M.A., Blumberg, J.B., and Cannon, J.G.: Antioxidant response to exercise-induced oxidative stress and protection by vitamin E. Ann. N.Y. Acad. Sci., 669: 363–4, 1992.PubMedCrossRefGoogle Scholar
  46. 46.
    Camus, G., Deby-Dupont, G., Duchateau, J., Deby, C., Pincemail, J., and Lamy, M.: Are similar inflammatory factors involved in strenuous exercise and sepsis? Int. Care Med. 20: 602–10, 1994.CrossRefGoogle Scholar
  47. 47.
    Hack, V., Strobel, G., Rau, J.P., and Weicker, H.: The effect of maximal exercise on the activity of neutrophil granulocytes in highly trained athletes in a moderate training period. Eur. J. Appl. Physiol. Occ. Physiol., 65: 520–4, 1992.CrossRefGoogle Scholar
  48. 48.
    Smith, J.A., Gray, A.B., Pyne, D.B., Baker, M.S., Telford, R.D., and Weidemann, M.J.: Moderate exercise triggers both priming and activation of neutrophil subpopulations. Am J. Physiol., 39: R838–45, 1996.Google Scholar
  49. 49.
    Kim, J.D., McCarter, R.J.M., and Yu, B.P.: Influence of age, exercise, and dietary restriction on oxidative stress in rats. Aging Clin. Exp. Res., 8: 123–9, 1996.Google Scholar
  50. 50.
    Somani, S., and Kamimori, G.H.: The effects of exercise on absorption, distribution, metabolism, excretion, and pharmacokinetics of drugs, in Pharmacology in Exercise and Sports, edited by Somani, S. New York, CRC Press, 1996, pp. 1–38.Google Scholar
  51. 51.
    Godin, D.V., and Wohaieb, S.A.: Nutritional deficiency, starvation, and tissue antioxidant status. Free Radic. Biol. Med., 5: 165–76, 1988.PubMedCrossRefGoogle Scholar
  52. 52.
    Leeuwenburgh, C. and Ji, L.L.: Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J. Nutr., 126: 1833–43, 1996PubMedGoogle Scholar
  53. 53.
    Harris, E.D.: Regulation of antioxidant enzymes. FASEB J., 6: 2675–83, 1992.PubMedGoogle Scholar
  54. 54.
    Packer, L., Witt, E.H., and Tritschler, H.J.: a-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med., 19: 227–50, 1995.PubMedCrossRefGoogle Scholar
  55. 55.
    Packer, L.: Protective role of vitamin E in biological systems. Am. J. Clin. Nutr., 53: 1050S–5S, 1991.Google Scholar
  56. 56.
    Gohil, K., Packer, L., Lumen, B., Brooks, G.A., and Terblanche, S.E.: Vitamin E deficiency and vitamin C supplements: exercise and mitochondrial oxidation. J. Appl. Physiol., 60: 1986–91, 1986.PubMedGoogle Scholar
  57. 57.
    Anzueto, A., Andrade, F.H., Maxwell, L.C., Levine, S.M., Lawrence, R.A., and Jenkenson, S.G.: Diaphragmatic function after resistive breathing in vitamin E-deficient rats. J. Appl. Physiol., 74: 267–71, 1993.PubMedCrossRefGoogle Scholar
  58. 58.
    Gohil, K., Rothfuss, L., Lang, J., and Packer, L.: Effect of exercise training on tissue vitamin E and ubiquinone content. J. Appl. Physiol., 63: 1638–41, 1987.PubMedGoogle Scholar
  59. 59.
    Tiidus, P.M., and Houston, M.E.: Vitamin E status does not affect the responses to exercise training and acute exercise in female rats. J. Nutr., 123: 834–40, 1993.PubMedGoogle Scholar
  60. 60.
    Aikawa, K.M., Quintanilha, A.T., de Lumen, B.O., Brooks, G.A., and Packer, L.: Exercise endurance training alters vitamin E tissue level and red blood cell hemolysis in rodents. Biosci. Rep., 4: 253–7, 1984.PubMedCrossRefGoogle Scholar
  61. 61.
    Packer, L., Almada, A.L., Rothfuss, L.M., and Wilson, D.S.: Modulation of tissue vitamin E levels by physical exercise. Ann. N.Y. Acad. Sci., 570: 311–21, 1989.PubMedGoogle Scholar
  62. 62.
    Goldfarb, A.H., McIntosh, M.K., Boyer, B.T., and Fatouros, J.: Vitamin E effects on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats. J. Appl. Physiol., 76: 1630–5, 1994.PubMedGoogle Scholar
  63. 63.
    Sumida, S., Tanaka, K., Kitao, H., and Nakadomo, F.: Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int. J. Biochem., 21: 835–8, 1989.PubMedCrossRefGoogle Scholar
  64. 64.
    Kanter, M.M.: Free radicals and exercise: effects of nutritional antioxidant supplementation, in Exercise and Sport Science Reviews, edited by Holloszy, J.O. Baltimore, Williams and Wilkins, 1995, pp.375–98.Google Scholar
  65. 65.
    Beyer, R.E.: The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. J. Bioenerg. Biomem. 26: 349–58, 1994.CrossRefGoogle Scholar
  66. 66.
    Niki, E., Kawakami, A., Saito, M., Yamamoto, Y., Tsuchiya, J., and Kamiya, Y.: Effect of phytyl side chain of vitamin E on its antioxidant activity. J. Biol. Chem., 260: 2191–6, 1985.PubMedGoogle Scholar
  67. 67.
    Bendich, A., and Langseth, L.:. The health effects of vitamin C supplementation: a review. J. Am. Coll. Nutr., 14: 124–36, 1995.PubMedGoogle Scholar
  68. 68.
    Packer, L., Gohil, K., DeLumen, B., and Terblanche, S.E.: A comparative study on the effects of ascorbic acid deficiency and supplementation on endurance and mitochondrial oxidative capacities in various tissues of the guinea pig. Comp. Biochem. Physiol., 83B: 235–40, 1986.Google Scholar
  69. 69.
    Meister, A., and Anderson, M.E.: Glutathione. Annu. Rev. Biochem., 52: 711–60, 1983.PubMedCrossRefGoogle Scholar
  70. 70.
    Lu, S., Garcia-Ruiz, A., Kuhlenkamp, C., Ookhtens, M., Salas-Prato, M., and Kaplowitz, N.: Hormonal regulation of glutathione efflux. J. Biol. Chem., 205: 16088–95, 1990.Google Scholar
  71. 71.
    Lew, H., Pyke, S., and Quintanilha, A.: Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett., 185: 262–6, 1985.PubMedCrossRefGoogle Scholar
  72. 72.
    Sen, C.K., Marin, E., Kretzschmar, M., and Hanninen, O.: Skeletal muscle and liver glutathione homeostasis in response to training, exercise and immobilization. J. Appl. Physiol. 73: 1265–72, 1992.PubMedGoogle Scholar
  73. 73.
    Leeuwenburgh, C., and Ji, L.L.: Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch. Biochem. Biophys., 316: 941–9, 1995.PubMedCrossRefGoogle Scholar
  74. 74.
    Ji, L.L., and Fu, R.G.: Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J. Appl. Physiol., 72: 549–54, 1992.PubMedGoogle Scholar
  75. 75.
    Villa, J.G., Collado, P.S., Almar, M.M., and Gonzalez, J.: Changes in the biliary excretion of organic anions following exhaustive exercise in rats. Biochem. Pharmacol., 40: 2519–24, 1990.PubMedCrossRefGoogle Scholar
  76. 76.
    Pyke, S., Lew, H., and Quintanilha, A.: Severe depletion in liver glutathione during physical exercise. Biochem. Biophys. Res. Commun., 139: 926–31, 1986.PubMedCrossRefGoogle Scholar
  77. 77.
    Durarte, J.A.R., Appell, H.J., Carvalho, F., Bastos, M., and Soares, J.M.: Endothelium-derived oxidative stress may contribute to exercise-induced muscle damage. Int. J. Sports Med., 14: 440–3, 1993.Google Scholar
  78. 78.
    Leeuwenburgh, C., Leichtweis, S., Hollander, J., Fiebig, R., Gore, M., and Ji, L.L.: Effect of acute exercise on glutathione deficient heart. Mol. Cell. Biochem., 156: 17–24, 1996.PubMedCrossRefGoogle Scholar
  79. 79.
    Leeuwenburgh, C., Hollander, J., Leichtweis, S., Griffiths, M., Gore, M., and Ji, L.L.: Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am. J. Physiol., 272: R383–R369, 1997.Google Scholar
  80. 80.
    Duthie, G.G., Robertson, J.D., Maughan, R.J., and Morrice, P.C.: Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch. Biochem. Biophys., 282: 78–83, 1990.PubMedCrossRefGoogle Scholar
  81. 81.
    Leeuwenburgh, C., Fiebig, R., Chandwaney, R., and Ji, L.L.: Aging and exercise training in skeletal muscle: response of glutathione and antioxidant enzyme systems. Am. J. Physiol., 267: R439–45, 1994.PubMedGoogle Scholar
  82. 82.
    Ji, L.L., Fu, R.G., Mitchell, E.W., Waldrop, T.G., and Swartz, H.A.: Cardiac hypertrophy alters myocardial response to ischemia and reperfusion in vivo. Acta Physiol. Scand., 151: 279–90, 1994.PubMedGoogle Scholar
  83. 83.
    Kihlstrom, M.: Protection effect of endurance training against reoxygenation-induced injury in rat heart. J. Appl. Physiol. 68: 1672–8, 1990.PubMedGoogle Scholar
  84. 84.
    Marin, E., Kretzschmar, M., Arokoski, J., Hanninen, O., and Klinger, W.: Enzymes of glutathione synthesis in dog skeletal muscle and their response to training. Acta Physiol. Scand., 147: 369–73, 1993.PubMedGoogle Scholar
  85. 85.
    Ishikawa, T., and Sies, H.: Cardiac transport of glutathione disulfide and S-conjugates. J. Biol. Chem., 259: 3838–43, 1984.PubMedGoogle Scholar
  86. 86.
    Morales, C.F., Anzueto, A., Andrade, F., Levine, S.M., Maxwell, L.C., Lawrence, R.A., Jenkinson, S.G.: Diethylmaleate produces diaphragmatic impairment after resistive breathing. J. Appl. Physiol., 75: 2406–11, 1993.PubMedGoogle Scholar
  87. 87.
    Novelli, G.P., Falsini, S., and Braccioti, G.: Exogenous glutathione increases endurance to muscle effort in mice. Pharmacol. Res., 23: 149–55, 1991.PubMedCrossRefGoogle Scholar
  88. 88.
    Leeuwenburgh, C., Fiebig, R., Leichtweis, S., Hollander, J., and Ji, L.L.: Effect of glutathione and glutathione ester supplementation during prolonged exercise. Med. Sci. Sports Exerc., 27: S39, 1995.Google Scholar
  89. 89.
    Griffiths, O.W., and Meister, A.: Glutathione: interorgan transpocation, turnover, and metabolism. Proc. Natl. Acad. Sci. USA, 76: 5606–10, 1979.Google Scholar
  90. 90.
    Sen, C.K., Atalay, M., and Hanninen, O.: Exercise-induced oxidative stress: glutathione supplementation and deficiency. J. Appl. Physiol., 77: 2177–87, 1994.PubMedGoogle Scholar
  91. 91.
    Bray, T.M., and Taylor, C.G.: Enhancement of tissue glutathione for antioxidant and immune functions in malnutrition. Biochem. Pharmacol., 47: 2113–23, 1994.PubMedCrossRefGoogle Scholar
  92. 92.
    Martensson, J., and Meister, A.: Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc. Natl. Acad. Sci. USA, 86: 471–5, 1989.PubMedGoogle Scholar
  93. 93.
    Sen, C.K., Rankinen, T., Vaisanen, S., and Rauramaa, R.: Oxidative stress following human exercise: effect of N-acetylcysteine supplementation. J. Appl. Physiol., 76: 2570–7, 1994.PubMedGoogle Scholar
  94. 94.
    Beyer, R.E.: The relative essentiality of the antioxidant function of coenzyme Q — the interactive role of DT-diaphorase. Mol. Asp. Med., 15: S117–29, 1994.CrossRefGoogle Scholar
  95. 95.
    Leibovitz, B., Hu, M.L., Tappel, A.L., Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices. J. Nutr., 120: 97–104, 1990.PubMedGoogle Scholar
  96. 96.
    Shimomura, Y., Suzuki, M., Sugiyama, S., Hanaki, Y., and Ozawa, T.: Protective effect of coenzyme Q10 on exercise-induced muscular injury. Biochem. Biophys. Res. Commun., 176: 349–355, 1991.PubMedCrossRefGoogle Scholar
  97. 97.
    Sevanian, A., Davies, K.J.A., and Hochstein, P.: Conservation of vitamin C by uric acid in the blood. J. Free Radic. Biol. Med., 1: 117–24, 1985.PubMedCrossRefGoogle Scholar
  98. 98.
    Hellsten-Westing, Y., Ekblom, B., and Sjodin, B.: The metabolic relation between hypoxanthine and uric acid in man following maximal short-distance running. Acta Physiol. Scand. 137: 341–5, 1989.Google Scholar
  99. 99.
    Quintanilha, A.T., and Packer, L.: Vitamin E, physical exercise and tissue oxidative damage, Ciba Foundation Symp. 101: 56–69, 1983.Google Scholar
  100. 100.
    Ji, L.L., Dillon, D., and Wu, E.: Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol., 258: R918–23, 1990.PubMedGoogle Scholar
  101. 101.
    Lang, J.K., Gohil, K., Packer, L., and Burk, R.F.: Selenium deficiency, endurance exercise capacity, and antioxidant status in rats. J. Appl. Physiol., 63: 2532–5, 1987.PubMedGoogle Scholar
  102. 102.
    Buczynski, A., Kedziora, J., Tkaczewski, W., and Wachowicz B.: Effect of submaximal physical exercise on antioxidant protection of human blood platelets. Int. J. Sports Med., 12: 52–4, 1991.PubMedGoogle Scholar
  103. 103.
    Mena, P., Maynar, M., Gutierrez, J.M., Maynar, J., Timon, J., and Campillo, J.E.: Erythrocyte free radical scavenger enzymes in bicycle professional racers: adaptation to training. Int. J Sports Med., 12: 563–6, 1991.PubMedCrossRefGoogle Scholar
  104. 104.
    Lawler, J.M., Powers, S.K., Visser, T., Van Dijk, H., Korthuis, M.J., and Ji, L.L. Acute exercise and skeletal muscle antioxidant and metabolic enzymes: effect of fiber type and age. Am. J. Physiol., 265: R1344–50, 1993.Google Scholar
  105. 105.
    Ohno, H., Suzuki, K., Fujii, J., Yamashita, H., Kizaki, T., Oh-ishi, S., and Taniguchi, N.: Superoxide dismutases in exercise and disease, in Exercise and Oxygen Toxicity, edited by Sen, C.K., Packer, L., Hanninen, O. New York, Elsevier Science, 1994, pp. 127–61.Google Scholar
  106. 106.
    Ji, L.L.: Antioxidant enzyme response to exercise and aging. Med. Sci. Sports Exerc., 25: 225–31, 1993.PubMedGoogle Scholar
  107. 107.
    Fridovich, I.: Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 64: 97–112, 1995.PubMedCrossRefGoogle Scholar
  108. 108.
    Cao, G.H., and Chen, J.D.: Effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase in trained mice. Arch. Biochem. Biophys., 291: 147–53, 1991.PubMedCrossRefGoogle Scholar
  109. 109.
    Quintanilha, A.T. The effect of physical exercise and/or Vitamin E on tissue oxidative metabolism. Biochem Soc. Trans., 12: 403–4, 1984.PubMedGoogle Scholar
  110. 110.
    Powers, S.K., Criswell, D., Lawler, J., Ji, L.L., Martin, D., Herb, R., and Dudley, G.: Influence of exercise intensity and duration on antioxidant enzyme activity in skeletal muscle differing in fiber type. Am. J. Physiol., 266: R375–80, 1994.PubMedGoogle Scholar
  111. 111.
    Powers, S.K., Criswell, D., Lawler, J., Martin, D., Lieu, F.K., Ji, L.L., and Herb, R.A.: Rigorous exercise training increases superoxide dismutase activity in the ventricular myocardium. Am. J. Physiol., 265: H2094–8, 1993.Google Scholar
  112. 112.
    Powers, S.K., Criswell, D., Lawler, J., Martin, D., Ji, L.L., and Dudley, G.: Training-induced oxidative and antioxidant enzyme activity in the diaphragm: influence of exercise intensity and duration. Resp. Physiol., 95: 226–37, 1994.Google Scholar
  113. 113.
    Gore, M., Fiebig, R., Hollander, J., Leichtweis, S., Leeuwenburgh, C., and Ji, L.L.: Exercise training alters antioxidant enzyme activity and mRNA abundance in skeletal muscle. Med. Sci. Sports Exerc., 28: S101, 1996.Google Scholar
  114. 114.
    Brady, P.S., Brady, L.J., and Ullrey, D.E.: Selenium, vitamin E and the response to swimming stress in rats. J. Nutr., 109: 1103–9, 1979.PubMedGoogle Scholar
  115. 115.
    Vihko, V., Salminen, A., and Rantamaki, J.: Oxidative lysosomal capacity in skeletal muscle of mice after endurance training. Acta Physiol. Scand., 104: 74–9, 1978.PubMedCrossRefGoogle Scholar
  116. 116.
    Gunzler, W.A., and Flohe, L.: Glutathione peroxidase, in Handbook of Methods for Oxygen Free Radical Research, edited by Greenwald, R.A. Boca Raton, CRC Press, 1985, p. 285–90.Google Scholar
  117. 117.
    Blum, J., and Fridovich, I.: Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys., 240: 500–8, 1985.PubMedCrossRefGoogle Scholar
  118. 118.
    Laughlin M.H., Simpson, T., Sexton, W.L., Brown, OR., Smith, J.K., and Korthuis, RJ.: Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J. Appl. Physiol., 68:2337–43, 1990.PubMedGoogle Scholar
  119. 119.
    Calderera, C.M., Guarnierri, C., and Lazzari, F.: Catalase and peroxidase activity in cardiac muscle. Bull. Italian Exp. Biol. Soc., 49: 72–7, 1973.Google Scholar
  120. 120.
    Alessio, H.M., and Goldfarb, A.H.: Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J. Appl. Physiol., 64: 1333–6, 1988.PubMedGoogle Scholar
  121. 121.
    Luhtala, T., Roecher, E.B., Pugh, T., Feuers, R.J., and Weindruch, R.: Dietary restriction opposes age-related increases in rat skeletal muscle antioxidant enzyme activities. J. Gerontol. 1995.Google Scholar
  122. 122.
    Sies, H. Oxidative stress: introductory remarks, in Oxidative Stress, edited by Sies, H. New York, Academic Press, 1985. pp. 1–8.Google Scholar
  123. 123.
    Evelo, C.T.A., Palmen, N.G., Artur, Y., and Janssen, G.M.E.: Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur. J. Appl. Physiol., 64: 354–8, 1992.CrossRefGoogle Scholar
  124. 124.
    Ohno, H., Sato, Y., Yamashita, K., Rikuo, D., Katsura, A., Kondo, T., and Taniguchi, N.: The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cells. Can. J. Physiol. Pharmacol., 64: 1263–5, 1986.PubMedGoogle Scholar
  125. 125.
    Habig, W.H., Pabst, M.J., and Jakoby, W.B.: Glutathione S-transferases. J. Biol. Chem., 249: 7130–9, 1984.Google Scholar
  126. 126.
    Vani, M., Reddy, G.P., Reddy, G.R., Thyagaraju, K., and Reddana, P.: Glutathione-S-transferase, superoxide dismutase, xanthine oxidase, cata-lase, glutathione peroxidase and lipid peroxidation in the liver of exercised rats. Biochem. Int., 21: 17–26, 1990.PubMedGoogle Scholar
  127. 127.
    Reddy, K.V., Anuradha, D., Kumar, T.C., and Reddanna, P.: Induction of Ya1 subunit of rat hepatic glutathione S-transferases by exercise-induced oxidative stress. Arch. Biochem Biophys., 1995.Google Scholar
  128. 128.
    Storz, G., Tartaglia, L.A., and Ames, B.N.: Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science, 248: 189–94, 1990.PubMedGoogle Scholar
  129. 129.
    Demple, B., and Amabile-Cuevas, C.F.: Redox redux: the control of oxidative stress responses. Cell, 67: 837–9, 1991.PubMedCrossRefGoogle Scholar
  130. 130.
    Sen, C.K., and Packer, L.: Antioxidant and redox regulation of gene transcription. FASEB J., 10: 709–20, 1996.PubMedGoogle Scholar
  131. 131.
    Witt, E.H., Reznick, A.Z., Vigguie, C.A., Starke-Reed, P., and Packer, L.: Exercise, oxidative damage and the effects of antioxidant manipulation. J. Nutr., 122: 766–73, 1992.PubMedGoogle Scholar

Copyright information

© American Aging Association, Inc. 1997

Authors and Affiliations

  • Li Li Ji
    • 1
    • 2
  • Steve Leichtweis
    • 1
    • 2
  1. 1.Department of Kinesiology, Interdepartmental Program of Nutritional SciencesUniversity of Wisconsin-MadisonUSA
  2. 2.Institute on AgingUniversity of Wisconsin-MadisonUSA

Personalised recommendations