Advertisement

GeroScience

pp 1–15 | Cite as

Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans

  • Tamas Csipo
  • Peter Mukli
  • Agnes Lipecz
  • Stefano Tarantini
  • Dhay Bahadli
  • Osamah Abdulhussein
  • Cameron Owens
  • Tamas Kiss
  • Priya Balasubramanian
  • Ádám Nyúl-Tóth
  • Rachel A. Hand
  • Valeriya Yabluchanska
  • Farzaneh A. Sorond
  • Anna Csiszar
  • Zoltan Ungvari
  • Andriy YabluchanskiyEmail author
Review

Abstract

Preclinical studies provide strong evidence that age-related impairment of neurovascular coupling (NVC) plays a causal role in the pathogenesis of vascular cognitive impairment (VCI). NVC is a critical homeostatic mechanism in the brain, responsible for adjustment of local cerebral blood flow to the energetic needs of the active neuronal tissue. Recent progress in geroscience has led to the identification of critical cellular and molecular mechanisms involved in neurovascular aging, identifying these pathways as targets for intervention. In order to translate the preclinical findings to humans, there is a need to assess NVC in geriatric patients as an endpoint in clinical studies. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that enables the investigation of local changes in cerebral blood flow, quantifying task-related changes in oxygenated and deoxygenated hemoglobin concentrations. In the present overview, the basic principles of fNIRS are introduced and the application of this technique to assess NVC in older adults with implications for the design of studies on the mechanistic underpinnings of VCI is discussed.

Keywords

Aging Neurovascular coupling Functional near-infrared spectroscopy fNIRS Vascular cognitive impairment and dementia VCI VCID Cognitive aging 

Notes

Funding information

This work was supported by grants from the American Heart Association (ST), the Oklahoma Center for the Advancement of Science and Technology (to AC, AY, ZU), the National Institute on Aging (R01-AG047879; R01-AG038747; R01-AG055395), the National Institute of Neurological Disorders and Stroke (NINDS; R01-NS056218 to AC, R01-NS100782 to ZU, R01-NS085002 to FAS), the Oklahoma Shared Clinical and Translational Resources (OSCTR) program funded by the National Institute of General Medical Sciences (GM104938, to AY), the Presbyterian Health Foundation (to ZU, AC, AY), the NIA-supported Geroscience Training Program in Oklahoma (T32AG052363), the Oklahoma Nathan Shock Center (P30AG050911), and the Cellular and Molecular GeroScience CoBRE (1P20GM125528, sub#5337).

References

  1. Abdelnour AF, Huppert T (2009) Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model. Neuroimage 46:133–143.  https://doi.org/10.1016/j.neuroimage.2009.01.033 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arridge SR (1999) Optical tomography in medical imaging. Inverse Problems 15:R41–R93.  https://doi.org/10.1088/0266-5611/15/2/022 CrossRefGoogle Scholar
  3. Baker WB, Parthasarathy AB, Busch DR, Mesquita RC, Greenberg JH, Yodh AG (2014) Modified Beer-Lambert law for blood flow. Biomed Opt Express 5:4053–4075.  https://doi.org/10.1364/BOE.5.004053 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA (2016) Metformin as a tool to target aging. Cell Metab 23:1060–1065.  https://doi.org/10.1016/j.cmet.2016.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berni A, Giuliani A, Tartaglia F, Tromba L, Sgueglia M, Blasi S, Russo G (2011) Effect of vascular risk factors on increase in carotid and femoral intima-media thickness. Identification of a risk scale. Atherosclerosis 216:109–114.  https://doi.org/10.1016/j.atherosclerosis.2011.01.034 CrossRefPubMedGoogle Scholar
  6. Bortfeld H (2019) Functional near-infrared spectroscopy as a tool for assessing speech and spoken language processing in pediatric and adult cochlear implant users. Dev Psychobiol 61:430–443.  https://doi.org/10.1002/dev.21818 CrossRefPubMedGoogle Scholar
  7. Bunce SC, Izzetoglu M, Izzetoglu K, Onaral B, Pourrezaei K (2006) Functional near-infrared spectroscopy. IEEE Engineering Med Biol Mag 25:54–62.  https://doi.org/10.1109/MEMB.2006.1657788 CrossRefGoogle Scholar
  8. Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864.  https://doi.org/10.1002/mrm.1910390602 CrossRefPubMedGoogle Scholar
  9. Carlson BW, Craft MA, Carlson JR, Razaq W, Deardeuff KK, Benbrook DM (2018) Accelerated vascular aging and persistent cognitive impairment in older female breast cancer survivors. Geroscience 40:325–336.  https://doi.org/10.1007/s11357-018-0025-z CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chandrasekhar S (1960) Radiative transfer. Dover Publications, New YorkGoogle Scholar
  11. Cheong W-F, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electronics 26:2166–2185CrossRefGoogle Scholar
  12. Cohen ER, Ugurbil K, Kim SG (2002) Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 22:1042–1053.  https://doi.org/10.1097/00004647-200209000-00002 CrossRefPubMedGoogle Scholar
  13. Cope M (1991) The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants. Dissertation, University College LondonGoogle Scholar
  14. Cope M, Delpy DT, Reynolds EO, Wray S, Wyatt J, van der Zee P (1988) Methods of quantitating cerebral near infrared spectroscopy data. Adv Exp Med Biol 222:183–189.  https://doi.org/10.1007/978-1-4615-9510-6_21 CrossRefPubMedGoogle Scholar
  15. Csipo T, Lipecz A, Fulop GA, Hand RA, Ngo BTN, Dzialendzik M, Tarantini S, Balasubramanian P, Kiss T, Yabluchanska V, Silva-Palacios F, Courtney DL, Dasari TW, Sorond F, Sonntag WE, Csiszar A, Ungvari Z, Yabluchanskiy A (2019) Age-related decline in peripheral vascular health predicts cognitive impairment. Geroscience 41:125–136.  https://doi.org/10.1007/s11357-019-00063-5 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cui X, Bray S, Reiss AL (2010) Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 49:3039–3046.  https://doi.org/10.1016/j.neuroimage.2009.11.050 CrossRefPubMedGoogle Scholar
  17. Devonshire IM, Papadakis NG, Port M, Berwick J, Kennerley AJ, Mayhew JE, Overton PG (2012) Neurovascular coupling is brain region-dependent. Neuroimage 59:1997–2006.  https://doi.org/10.1016/j.neuroimage.2011.09.050 CrossRefPubMedGoogle Scholar
  18. DiGirolamo GJ, Kramer AF, Barad V, Cepeda NJ, Weissman DH, Milham MP, Wszalek TM, Cohen NJ, Banich MT, Webb A, Belopolsky AV, McAuley E (2001) General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport 12:2065–2071.  https://doi.org/10.1097/00001756-200107030-00054 CrossRefPubMedGoogle Scholar
  19. Drenckhahn C, Koch SP, Dummler J, Kohl-Bareis M, Steinbrink J, Dreier JP (2015) A validation study of the use of near-infrared spectroscopy imaging in primary and secondary motor areas of the human brain. Epilepsy Behav 49:118–125.  https://doi.org/10.1016/j.yebeh.2015.04.006 CrossRefPubMedGoogle Scholar
  20. Ehlis AC, Schneider S, Dresler T, Fallgatter AJ (2014) Application of functional near-infrared spectroscopy in psychiatry. Neuroimage 85 Pt 1:478–488.  https://doi.org/10.1016/j.neuroimage.2013.03.067 CrossRefPubMedGoogle Scholar
  21. Erdler M, Beisteiner R, Mayer D, Kaindl T, Edward V, Windischberger C, Lindinger G, Deecke L (2000) Supplementary motor area activation preceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11:697–707.  https://doi.org/10.1006/nimg.2000.0579 CrossRefPubMedGoogle Scholar
  22. Fabiani M et al (2013) Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage.  https://doi.org/10.1016/j.neuroimage.2013.04.113 CrossRefGoogle Scholar
  23. Fabiani M, Gordon BA, Maclin EL, Pearson MA, Brumback-Peltz CR, Low KA, McAuley E, Sutton BP, Kramer AF, Gratton G (2014) Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage 85 Pt 1:592–607.  https://doi.org/10.1016/j.neuroimage.2013.04.113 CrossRefPubMedGoogle Scholar
  24. Faraco G, Park L, Zhou P, Luo W, Paul SM, Anrather J, Iadecola C (2016) Hypertension enhances Abeta-induced neurovascular dysfunction, promotes beta-secretase activity, and leads to amyloidogenic processing of APP. J Cereb Blood Flow Metab 36:241–252.  https://doi.org/10.1038/jcbfm.2015.79 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Franceschini MA, Fantini S, Paunescu LA, Maier JS, Gratton E (1998) Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media. Appl Opt 37:7447–7458CrossRefGoogle Scholar
  26. Gatto R, Hoffman W, Mueller M, Flores A, Valyi-Nagy T, Charbel FT (2006) Frequency domain near-infrared spectroscopy technique in the assessment of brain oxygenation: a validation study in live subjects and cadavers. J Neurosci Methods 157:274–277.  https://doi.org/10.1016/j.jneumeth.2006.04.013 CrossRefPubMedGoogle Scholar
  27. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985) 100:328–335.  https://doi.org/10.1152/japplphysiol.00966.2005 CrossRefGoogle Scholar
  28. Gold BT, Powell DK, Xuan L, Jicha GA, Smith CD (2010) Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiol Aging 31:512–522.  https://doi.org/10.1016/j.neurobiolaging.2008.04.005 CrossRefPubMedGoogle Scholar
  29. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S, American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:2672–2713.  https://doi.org/10.1161/STR.0b013e3182299496 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grazioli S, Mauri M, Crippa A, Maggioni E, Molteni M, Brambilla P, Nobile M (2019) Light up ADHD: II. Neuropharmacological effects measured by near infrared spectroscopy: is there a biomarker? J Affect Disord 244:100–106.  https://doi.org/10.1016/j.jad.2018.10.100 CrossRefPubMedGoogle Scholar
  31. Hamel E, Royea J, Ongali B, Tong XK (2016) Neurovascular and cognitive failure in Alzheimerʼs disease: benefits of cardiovascular therapy. Cell Mol Neurobiol 36:219–232.  https://doi.org/10.1007/s10571-015-0285-4 CrossRefPubMedGoogle Scholar
  32. Hendrikx D, Smits A, Lavanga M, de Wel O, Thewissen L, Jansen K, Caicedo A, van Huffel S, Naulaers G (2019) Measurement of neurovascular coupling in neonates. Front Physiol 10:65.  https://doi.org/10.3389/fphys.2019.00065 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hirth C, Villringer K, Thiel A, Bernarding J, Mühlnickl W, Obrig H, Dirnagl U, Villringer A (1997) Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI. Adv Exp Med Biol 413:139–147.  https://doi.org/10.1007/978-1-4899-0056-2_15 CrossRefPubMedGoogle Scholar
  34. Hueber DM, Fantini S, Cerussi AE, Barbieri BB (1999) New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements vol 3597. BiOS ʼ99 International Biomedical Optics Symposium. SPIEGoogle Scholar
  35. Huneau C, Benali H, Chabriat H (2015) Investigating human neurovascular coupling using functional neuroimaging: a critical review of dynamic models. Front Neurosci 9:467.  https://doi.org/10.3389/fnins.2015.00467
  36. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimerʼs disease. Nat Rev Neurosci 5:347–360.  https://doi.org/10.1038/nrn1387 CrossRefPubMedGoogle Scholar
  37. Izzetoglu M, Devaraj A, Bunce S, Onaral B (2005) Motion artifact cancellation in NIR spectroscopy using Wiener filtering. IEEE Trans Biomed Eng 52:934–938.  https://doi.org/10.1109/TBME.2005.845243 CrossRefPubMedGoogle Scholar
  38. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267.  https://doi.org/10.1126/science.929199 CrossRefGoogle Scholar
  39. Kashou NH, Giacherio BM, Nahhas RW, Jadcherla SR (2016) Hand-grasping and finger tapping induced similar functional near-infrared spectroscopy cortical responses. Neurophotonics 3:025006.  https://doi.org/10.1117/1.NPh.3.2.025006 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kocsis L, Herman P, Eke A (2006) The modified Beer-Lambert law revisited. Phys Med Biol 51:N91–N98.  https://doi.org/10.1088/0031-9155/51/5/N02 CrossRefPubMedGoogle Scholar
  41. Kornhuber HH, Deecke L (1965) Changes in the brain potential in voluntary movements and passive movements in man: readiness potential and reafferent potentials. Pflugers Arch Gesamte Physiol Menschen Tiere 284:1–17CrossRefGoogle Scholar
  42. Lipecz A, Csipo T, Tarantini S, Hand RA, Ngo BTN, Conley S, Nemeth G, Tsorbatzoglou A, Courtney DL, Yabluchanska V, Csiszar A, Ungvari ZI, Yabluchanskiy A (2019) Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. Geroscience 41:341–349.  https://doi.org/10.1007/s11357-019-00078-y CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mildner T, Norris DG, Schwarzbauer C, Wiggins CJ (2001) A qualitative test of the balloon model for BOLD-based MR signal changes at 3 T. Magn Reson Med 46:891–899CrossRefGoogle Scholar
  44. Milham MP, Erickson KI, Banich MT, Kramer AF, Webb A, Wszalek T, Cohen NJ (2002) Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain Cogn 49:277–296CrossRefGoogle Scholar
  45. Mukli P, Nagy Z, Racz FS, Herman P, Eke A (2018) Impact of healthy aging on multifractal hemodynamic fluctuations in the human prefrontal cortex. Front Physiol 9:1072.  https://doi.org/10.3389/fphys.2018.01072 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimerʼs disease patients and experimental models. J Cereb Blood Flow Metab 31:1354–1370.  https://doi.org/10.1038/jcbfm.2011.43 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Obrig H, Villringer A (1997) Near-infrared spectroscopy in functional activation studies. Can NIRS demonstrate cortical activation? Adv Exp Med Biol 413:113–127.  https://doi.org/10.1007/978-1-4899-0056-2_13 CrossRefPubMedGoogle Scholar
  48. Obrig H, Villringer A (2003) Beyond the visible - imaging the human brain with light. J Cereb Blood Flow Metab 23:1–18CrossRefGoogle Scholar
  49. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872.  https://doi.org/10.1073/pnas.87.24.9868 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Papadopoulos P, Tong XK, Imboden H, Hamel E (2016) Losartan improves cerebrovascular function in a mouse model of Alzheimerʼs disease with combined overproduction of amyloid-beta and transforming growth factor-beta1. J Cereb Blood Flow Metab:271678X16658489.  https://doi.org/10.1177/0271678X16658489 CrossRefGoogle Scholar
  51. Park L, Anrather J, Girouard H, Zhou P, Iadecola C (2007) Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 27:1908–1918.  https://doi.org/10.1038/sj.jcbfm.9600491 CrossRefPubMedGoogle Scholar
  52. Park L et al (2014) Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke, 45:1815–1821.  https://doi.org/10.1161/STROKEAHA.114.005179 CrossRefGoogle Scholar
  53. Prince S, Kolehmainen V, Kaipio JP, Franceschini MA, Boas D, Arridge SR (2003) Time-series estimation of biological factors in optical diffusion tomography. Phys Med Biol 48:1491–1504.  https://doi.org/10.1088/0031-9155/48/11/301 CrossRefPubMedGoogle Scholar
  54. Restom K, Bangen KJ, Bondi MW, Perthen JE, Liu TT (2007) Cerebral blood flow and BOLD responses to a memory encoding task: a comparison between healthy young and elderly adults. Neuroimage 37:430–439.  https://doi.org/10.1016/j.neuroimage.2007.05.024 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Saager RB, Berger AJ (2005) Direct characterization and removal of interfering absorption trends in two-layer turbid media. J Opt Soc Am A Opt Image Sci Vis 22:1874–1882CrossRefGoogle Scholar
  56. Saager R, Berger A (2008) Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy. J Biomed Opt 13:034017.  https://doi.org/10.1117/1.2940587 CrossRefPubMedGoogle Scholar
  57. Saager RB, Telleri NL, Berger AJ (2011) Two-detector corrected near infrared spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS. Neuroimage 55:1679–1685.  https://doi.org/10.1016/j.neuroimage.2011.01.043 CrossRefPubMedGoogle Scholar
  58. Schei JL, Van Nortwick AS, Meighan PC, Rector DM (2012) Neurovascular saturation thresholds under high intensity auditory stimulation during wake. Neuroscience 227:191–200.  https://doi.org/10.1016/j.neuroscience.2012.09.060 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Scholkmann F, Wolf M (2013) General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt 18:105004.  https://doi.org/10.1117/1.JBO.18.10.105004 CrossRefPubMedGoogle Scholar
  60. Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M (2014) A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85:6–27.  https://doi.org/10.1016/j.neuroimage.2013.05.004 CrossRefPubMedGoogle Scholar
  61. Shin J, von Luhmann A, Kim DW, Mehnert J, Hwang HJ, Muller KR (2018) Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci Data 5:180003.  https://doi.org/10.1038/sdata.2018.3 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Siero JC, Hermes D, Hoogduin H, Luijten PR, Petridou N, Ramsey NF (2013) BOLD consistently matches electrophysiology in human sensorimotor cortex at increasing movement rates: a combined 7 T fMRI and ECoG study on neurovascular coupling. J Cereb Blood Flow Metab 33:1448–1456.  https://doi.org/10.1038/jcbfm.2013.97 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sleimen-Malkoun R, Temprado JJ, Hong SL (2014) Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels Front Aging Neurosci 6:140.  https://doi.org/10.3389/fnagi.2014.00140
  64. Sorond FA, Schnyer DM, Serrador JM, Milberg WP, Lipsitz LA (2008) Cerebral blood flow regulation during cognitive tasks: effects of healthy aging. Cortex 44:179–184.  https://doi.org/10.1016/j.cortex.2006.01.003 CrossRefPubMedGoogle Scholar
  65. Sorond FA, Kiely DK, Galica A, Moscufo N, Serrador JM, Iloputaife I, Egorova S, Dell'Oglio E, Meier DS, Newton E, Milberg WP, Guttmann CR, Lipsitz LA (2011) Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston Study. Ann Neurol 70:213–220.  https://doi.org/10.1002/ana.22433 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sorond FA, Hurwitz S, Salat DH, Greve DN, Fisher ND (2013a) Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology.  https://doi.org/10.1212/WNL.0b013e3182a351aa CrossRefGoogle Scholar
  67. Sorond FA, Hurwitz S, Salat DH, Greve DN, Fisher ND (2013b) Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology 81:904–909.  https://doi.org/10.1212/WNL.0b013e3182a351aa CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stefanova I, Stephan T, Becker-Bense S, Dera T, Brandt T, Dieterich M (2013) Age-related changes of blood-oxygen-level-dependent signal dynamics during optokinetic stimulation. Neurobiol Aging 34:2277–2286.  https://doi.org/10.1016/j.neurobiolaging.2013.03.031 CrossRefPubMedGoogle Scholar
  69. Stefanovic B, Warnking JM, Rylander KM, Pike GB (2006) The effect of global cerebral vasodilation on focal activation hemodynamics. Neuroimage 30:726–734.  https://doi.org/10.1016/j.neuroimage.2005.10.038 CrossRefPubMedGoogle Scholar
  70. Stickland R, Allen M, Magazzini L, Singh KD, Wise RG, Tomassini V (2019) Neurovascular coupling during visual stimulation in multiple sclerosis: A MEG-fMRI Study. Neuroscience 403:54–69.  https://doi.org/10.1016/j.neuroscience.2018.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Strangman G, Culver JP, Thompson JH, Boas DA (2002a) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17:719–731CrossRefGoogle Scholar
  72. Strangman G, Culver JP, Thompson JH, Boas DA (2002b) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17:719–731.  https://doi.org/10.1006/nimg.2002.1227 CrossRefPubMedGoogle Scholar
  73. Suzuki S, Takasaki S, Ozaki T, Kobayashi Y (1999) Tissue oxygenation monitor using NIR spatially resolved spectroscopy. In: Optical tomography and spectroscopy of tissue III. International Society for Optics and Photonics, pp 582-592Google Scholar
  74. Talukdar MT, Frost HR, Diamond SG (2015) Modeling neurovascular coupling from clustered parameter sets for multimodal EEG-NIRS. Comput Math Methods Med 2015:830849.  https://doi.org/10.1155/2015/830849 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P (2015a) Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab 35:1871–1881CrossRefGoogle Scholar
  76. Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P (2015b) Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab 35:1871–1881.  https://doi.org/10.1038/jcbfm.2015.162 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tarantini S et al (2017a) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimerʼs disease using functional laser speckle contrast imaging. Geroscience 39:465–473.  https://doi.org/10.1007/s11357-017-9980-z CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tarantini S et al (2017b) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimerʼs disease using functional laser speckle contrast imaging. Geroscience.  https://doi.org/10.1007/s11357-017-9980-z CrossRefGoogle Scholar
  79. Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A (2017c) Impaired neurovascular coupling in aging and Alzheimerʼs disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol 94:52–58.  https://doi.org/10.1016/j.exger.2016.11.004 CrossRefPubMedGoogle Scholar
  80. Tarantini S, Yabluchanksiy A, Fülöp GA, Hertelendy P, Valcarcel-Ares MN, Kiss T, Bagwell JM, O'Connor D, Farkas E, Sorond F, Csiszar A, Ungvari Z (2017d) Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. Geroscience 39:601–614.  https://doi.org/10.1007/s11357-017-0003-x CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tarantini S et al (2018a) Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood brain barrier disruption, neuroinflammation, amyloidogenic gene expression and cognitive decline in mice, mimicking the aging phenotype. J Gerontol A Biol Sci Med Sci 73(7):853–863CrossRefGoogle Scholar
  82. Tarantini S et al (2018b) Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17.  https://doi.org/10.1111/acel.12731 CrossRefGoogle Scholar
  83. Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, Hertelendy P, Kinter M, Ballabh P, Süle Z, Farkas E, Baur JA, Sinclair DA, Csiszar A, Ungvari Z (2019) Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol 24:101192.  https://doi.org/10.1016/j.redox.2019.101192 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tong XK, Lecrux C, Rosa-Neto P, Hamel E (2012) Age-dependent rescue by simvastatin of Alzheimerʼs disease cerebrovascular and memory deficits. J Neurosci 32:4705–4715.  https://doi.org/10.1523/JNEUROSCI.0169-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Topcuoglu MA, Aydin H, Saka E (2009) Occipital cortex activation studied with simultaneous recordings of functional transcranial Doppler ultrasound (fTCD) and visual evoked potential (VEP) in cognitively normal human subjects: effect of healthy aging. Neurosci Lett 452:17–22CrossRefGoogle Scholar
  86. Torricelli A, Pifferi A, Taroni P, Giambattistelli E, Cubeddu R (2001) In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy. Phys Med Biol 46:2227CrossRefGoogle Scholar
  87. Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, Ballabh P, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014a) Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 306:H299–H308.  https://doi.org/10.1152/ajpheart.00744.2013 CrossRefPubMedGoogle Scholar
  88. Toth P et al (2014b) Resveratrol treatment rescues neurovascular coupling in aged mice:role of improved cerebromicrovascular endothelial function and down-regulation of NADPH oxidas. Am J Physiol Heart Circ Physiol 306:–H299, 308.  https://doi.org/10.1152/ajpheart.00744.2013 CrossRefGoogle Scholar
  89. Toth P, Tarantini S, Csiszar A, Ungvari Z (2017) Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 312:H1–H20.  https://doi.org/10.1152/ajpheart.00581.2016 CrossRefPubMedGoogle Scholar
  90. Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fülöp GA, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A (2017) Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. Geroscience 39:33–42.  https://doi.org/10.1007/s11357-017-9964-z CrossRefPubMedPubMedCentralGoogle Scholar
  91. Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE (2013) Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J Vasc Res 50:445–457.  https://doi.org/10.1159/000354227 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wright ME, Wise RG (2018) Can blood oxygenation level dependent functional magnetic resonance imaging be used accurately to compare older and younger populations? A mini literature review. Front Aging Neurosci 10:371.  https://doi.org/10.3389/fnagi.2018.00371 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang T, Sun Y, Lu Z, Leak RK, Zhang F (2017) The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 34:15–29.  https://doi.org/10.1016/j.arr.2016.09.007 CrossRefPubMedGoogle Scholar
  94. Zaletel M, Strucl M, Pretnar-Oblak J, Zvan B (2005) Age-related changes in the relationship between visual evoked potentials and visually evoked cerebral blood flow velocity response. Funct Neurol 20:115–120PubMedGoogle Scholar
  95. Zebrowitz L, Ward N, Boshyan J, Gutchess A, Hadjikhani N (2016) Dedifferentiated face processing in older adults is linked to lower resting state metabolic activity in fusiform face area. Brain Res 1644:22–31.  https://doi.org/10.1016/j.brainres.2016.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zhang F, Roeyers H (2019) Exploring brain functions in autism spectrum disorder: a systematic review on functional near-infrared spectroscopy (fNIRS) studies. Int J Psychophysiol 137:41–53.  https://doi.org/10.1016/j.ijpsycho.2019.01.003 CrossRefPubMedGoogle Scholar
  97. Zhang Y, Brooks DH, Franceschini MA, Boas DA (2005) Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. J Biomed Opt 10:11014.  https://doi.org/10.1117/1.1852552 CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association 2019

Authors and Affiliations

  • Tamas Csipo
    • 1
    • 2
    • 3
  • Peter Mukli
    • 1
    • 4
  • Agnes Lipecz
    • 1
    • 5
  • Stefano Tarantini
    • 1
    • 3
  • Dhay Bahadli
    • 1
  • Osamah Abdulhussein
    • 1
  • Cameron Owens
    • 1
  • Tamas Kiss
    • 1
    • 6
  • Priya Balasubramanian
    • 1
  • Ádám Nyúl-Tóth
    • 1
    • 7
  • Rachel A. Hand
    • 1
  • Valeriya Yabluchanska
    • 1
    • 8
  • Farzaneh A. Sorond
    • 9
  • Anna Csiszar
    • 1
    • 6
  • Zoltan Ungvari
    • 1
    • 3
    • 6
    • 10
  • Andriy Yabluchanskiy
    • 1
    Email author
  1. 1.Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Division of Clinical Physiology, Department of Cardiology / Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of MedicineUniversity of DebrecenDebrecenHungary
  3. 3.International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public HealthSemmelweis UniversityBudapestHungary
  4. 4.Department of Physiology, Faculty of MedicineSemmelweis UniversityBudapestHungary
  5. 5.Department of OphthalmologyJosa Andras HospitalNyiregyhazaHungary
  6. 6.International Training Program in Geroscience, Theoretical Medicine Doctoral School/Department of Medical Physics and InformaticsUniversity of SzegedSzegedHungary
  7. 7.Institute of BiophysicsBiological Research CentreSzegedHungary
  8. 8.Bon SecoursSt. Francis Family Medicine CenterMidlothianUSA
  9. 9.Department of Neurology, Division of Stroke and Neurocritical CareNorthwestern University Feinberg School of MedicineChicagoUSA
  10. 10.Department of Health Promotion Sciences, College of Public HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations