Advertisement

GeroScience

, Volume 41, Issue 5, pp 543–559 | Cite as

Transforming growth factor-β promotes basement membrane fibrosis, alters perivascular cerebrospinal fluid distribution, and worsens neurological recovery in the aged brain after stroke

  • Matthew D. Howe
  • J. Weldon Furr
  • Yashasvee Munshi
  • Meaghan A. Roy-O’Reilly
  • Michael E. Maniskas
  • Edward C. Koellhoffer
  • John d’Aigle
  • Lauren H. Sansing
  • Louise D. McCullough
  • Akihiko UrayamaEmail author
Original Article
  • 99 Downloads

Abstract

Aging and stroke alter the composition of the basement membrane and reduce the perivascular distribution of cerebrospinal fluid and solutes, which may contribute to poor functional recovery in elderly patients. Following stroke, TGF-β induces astrocyte activation and subsequent glial scar development. This is dysregulated with aging and could lead to chronic, detrimental changes within the basement membrane. We hypothesized that TGF-β induces basement membrane fibrosis after stroke, leading to impaired perivascular CSF distribution and poor functional recovery in aged animals. We found that CSF entered the aged brain along perivascular tracts; this process was reduced by experimental stroke and was rescued by TGF-β receptor inhibition. Brain fibronectin levels increased with experimental stroke, which was reversed with inhibitor treatment. Exogenous TGF-β stimulation increased fibronectin expression, both in vivo and in primary cultured astrocytes. Oxygen-glucose deprivation of cultured astrocytes induced multiple changes in genes related to astrocyte activation and extracellular matrix production. Finally, in stroke patients, we found that serum TGF-β levels correlated with poorer functional outcomes, suggesting that serum levels may act as a biomarker for functional recovery. These results support a potential new treatment strategy to enhance recovery in elderly stroke patients.

Keywords

Amyloid-β Astrocyte Basement membrane Cerebrospinal fluid Stroke TGF-β 

Notes

Funding information

This study was partially supported by funding provided to the Texas Alzheimer’s Research and Care Consortium (TARCC) by the state of Texas, through the Texas Council on Alzheimer’s Disease and Related Disorders (to A.U.), and NIH/NIA RF1AG057576 (to A.U.), and by the NIH/NINDS R01NS094543 (to L.D.M.). Fellowship support was provided by the American Heart Association via AHA17PRE33410369 (to M.D.H.) and the NIH via 4TL1TR000369-10 (to M.D.H.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the article.

Supplementary material

11357_2019_118_MOESM1_ESM.docx (46 kb)
ESM 1(DOCX 47 kb).

References

  1. Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA, Carare RO (2018) Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol 136:139–152.  https://doi.org/10.1007/s00401-018-1862-7 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Buckwalter M, Pepper J-P, Gaertner RF, von Euw D, Lacombe P, Wyss-Coray T (2002) Molecular and functional dissection of TGF-beta1-induced cerebrovascular abnormalities in transgenic mice. Ann N Y Acad Sci 977:87–95CrossRefGoogle Scholar
  3. Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS (2014) Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 62:1227–1240.  https://doi.org/10.1002/glia.22675 CrossRefPubMedPubMedCentralGoogle Scholar
  4. de Oliveira FL, Araújo-Jorge TC, de Souza EM, de Oliveira GM, Degrave WM, Feige JJ, Bailly S, Waghabi MC (2012) Oral Administration of GW788388, an Inhibitor of transforming growth factor beta signaling, prevents heart fibrosis in Chagas disease. PLoS Negl Trop Dis 6:e1696.  https://doi.org/10.1371/journal.pntd.0001696 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Doyle KP, Buckwalter MS (2014) A mouse model of permanent focal ischemia: distal middle cerebral artery occlusion. Methods Mol Biol 1135:103–110.  https://doi.org/10.1007/978-1-4939-0320-7_9 CrossRefPubMedGoogle Scholar
  6. Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS (2010) TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation 7:62.  https://doi.org/10.1186/1742-2094-7-62 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511.  https://doi.org/10.1007/s00281-009-0177-0 CrossRefPubMedGoogle Scholar
  8. Feigin VL, Nichols E, Alam T et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–480.  https://doi.org/10.1016/S1474-4422(18)30499-X CrossRefGoogle Scholar
  9. Gellibert F, de Gouville A-C, Woolven J, Mathews N, Nguyen VL, Bertho-Ruault C, Patikis A, Grygielko ET, Laping NJ, Huet S (2006) Discovery of 4-{4-[3-(pyridin-2-yl)-1 H-pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2 H - pyran-4-yl)benzamide (GW788388): a potent, selective, and orally active transforming growth factor-β type i receptor inhibitor. J Med Chem 49:2210–2221.  https://doi.org/10.1021/jm0509905 CrossRefPubMedGoogle Scholar
  10. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S, American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American heart association/American stroke association. Stroke 42:2672–2713.  https://doi.org/10.1161/STR.0b013e3182299496 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hamann GF, Liebetrau M, Martens H, Burggraf D, Kloss CU, Bültemeier G, Wunderlich N, Jäger G, Pfefferkorn T (2002) Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 22:526–533.  https://doi.org/10.1097/00004647-200205000-00004 CrossRefPubMedGoogle Scholar
  12. Hamby ME, Uliasz TF, Hewett SJ, Hewett JA (2006) Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods 150:128–137.  https://doi.org/10.1016/j.jneumeth.2005.06.016 CrossRefPubMedGoogle Scholar
  13. Hawkes CA, Härtig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443.  https://doi.org/10.1007/s00401-011-0801-7 CrossRefPubMedGoogle Scholar
  14. Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JA, Carare RO (2012) Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 Allele. PLoS One 7:e41636.  https://doi.org/10.1371/journal.pone.0041636 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Howe MD, Atadja LA, Furr JW, Maniskas ME, Zhu L, McCullough L, Urayama A (2018) Fibronectin induces the perivascular deposition of cerebrospinal fluid–derived amyloid-β in aging and after stroke. Neurobiol Aging 72:1–13.  https://doi.org/10.1016/J.NEUROBIOLAGING.2018.07.019 CrossRefPubMedGoogle Scholar
  16. Huang Q, Chen B, Wang F, Huang H, Milner R, Li L (2015) The temporal expression patterns of fibronectin and its receptors-α5β1 and αvβ3 integrins on blood vessels after cerebral ischemia. Restor Neurol Neurosci 33:493–507.  https://doi.org/10.3233/RNN-140491 CrossRefPubMedGoogle Scholar
  17. Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111.  https://doi.org/10.1126/scitranslmed.3003748 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199.  https://doi.org/10.1523/JNEUROSCI.1592-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193.  https://doi.org/10.1523/JNEUROSCI.3020-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jiang C, Kong W, Wang Y, Ziai W, Yang Q, Zuo F, Li F, Wang Y, Xu H, Li Q, Yang J, Lu H, Zhang J, Wang J (2017) Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget 8:3553–3567.  https://doi.org/10.18632/oncotarget.12201 CrossRefPubMedGoogle Scholar
  21. Jullienne A, Roberts JM, Pop V, Paul Murphy M, Head E, Bix GJ, Badaut J (2014) Juvenile traumatic brain injury induces long-term perivascular matrix changes alongside amyloid-beta accumulation. J Cereb Blood Flow Metab 34:1637–1645.  https://doi.org/10.1038/jcbfm.2014.124 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Koellhoffer E, McCullough L, Ritzel R (2017) Old Maids: Aging and Its Impact on Microglia Function. Int J Mol Sci 18:769.  https://doi.org/10.3390/ijms18040769 CrossRefPubMedCentralGoogle Scholar
  23. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861.  https://doi.org/10.1002/ana.24271 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Krupinski J, Kumar P, Kumar S, Kaluza J (1996) Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke 27:852–857.  https://doi.org/10.1161/01.str.27.5.852 CrossRefPubMedGoogle Scholar
  25. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487.  https://doi.org/10.1038/nature21029 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG (2015) Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 35:371–381.  https://doi.org/10.1038/jcbfm.2014.215 CrossRefPubMedGoogle Scholar
  27. Ma Q, Ries M, Decker Y, Müller A, Riner C, Bücker A, Fassbender K, Detmar M, Proulx ST (2019) Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol 137:151–165.  https://doi.org/10.1007/s00401-018-1916-x CrossRefPubMedGoogle Scholar
  28. Manwani B, Liu F, Xu Y et al (2011) Functional recovery in aging mice after experimental stroke. Brain Behav Immun 25:1689–1700.  https://doi.org/10.1016/j.bbi.2011.06.015 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Morris AWJ, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, Weller RO, Carare RO (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 131:725–736.  https://doi.org/10.1007/s00401-016-33-z CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nguyen T-VV, Hayes M, Zbesko JC et al (2018) Alzheimer’s associated amyloid and tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia. Acta Neuropathol Commun 6:100.  https://doi.org/10.1186/s40478-018-0603-4 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nickel J, ten Dijke P, Mueller TD (2018) TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 50:12–36.  https://doi.org/10.1093/abbs/gmx126 CrossRefGoogle Scholar
  32. Parham CL, Shaw C, Auckland LD, Dickeson SK, Griswold-Prenner I, Bix G (2016) Perlecan domain V inhibits amyloid-β induced activation of the α2β1 integrin-mediated neurotoxic signaling cascade. J Alzheimers Dis 54:1629–1647.  https://doi.org/10.3233/JAD-160290 CrossRefPubMedGoogle Scholar
  33. Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks MJ, Abbott NJ, Meyerand ME, Sorokin L, Stanimirovic DB, Thorne RG (2018) Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol 596:445–475.  https://doi.org/10.1113/JP275105 CrossRefPubMedGoogle Scholar
  34. Smits HA, Rijsmus A, van Loon JH, Wat JW, Verhoef J, Boven LA, Nottet HS (2002) Amyloid-beta-induced chemokine production in primary humamacrophages and astrocytes. J Neuroimmunol 127:160–168CrossRefGoogle Scholar
  35. Su Y, Xia W, Li J et al (2016) Relating conformation to function in integrin α5β1. Proc Natl Acad Sci 113:E3872–E3881.  https://doi.org/10.1073/pnas.1605074113 CrossRefPubMedGoogle Scholar
  36. Tarantini S, Yabluchanksiy A, Fülöp GA, Hertelendy P, Valcarcel-Ares MN, Kiss T, Bagwell JM, O'Connor D, Farkas E, Sorond F, Csiszar A, Ungvari Z (2017) Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. GeroScience 39:601–614.  https://doi.org/10.1007/s11357-017-0003-x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Taylor RA, Chang C-F, Goods BA, Hammond MD, Mac Grory B, Ai Y, Steinschneider AF, Renfroe SC, Askenase MH, McCullough L, Kasner SE, Mullen MT, Hafler DA, Love JC, Sansing LH (2017) TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest 127:280–292.  https://doi.org/10.1172/JCI88647 CrossRefPubMedGoogle Scholar
  38. Thomsen MS, Routhe LJ, Moos T (2017) The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 37:3300–3317.  https://doi.org/10.1177/0271678X17722436 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ungvari Z, Tarantini S, Hertelendy P, Valcarcel-Ares MN, Fülöp GA, Logan S, Kiss T, Farkas E, Csiszar A, Yabluchanskiy A (2017) Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. GeroScience 39:33–42.  https://doi.org/10.1007/s11357-017-9964-z CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vincent VAM, Selwood SP, Murphy GM (2002) Proinflammatory effects of M-CSF and A beta in hippocampal organotypic cultures. Neurobiol Aging 23:349–362CrossRefGoogle Scholar
  41. Wang M, Ding F, Deng S, Guo X, Wang W, Iliff JJ, Nedergaard M (2017) Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci 37:2870–2877.  https://doi.org/10.1523/JNEUROSCI.2112-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wyss-Coray T, Feng L, Masliah E, Ruppe MD, Lee HS, Toggas SM, Rockenstein EM, Mucke L (1995) Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1. Am J Pathol 147:53–67PubMedPubMedCentralGoogle Scholar
  43. Wyss-Coray T, Masliah E, Mallory M et al (1997) Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature 389:603–606.  https://doi.org/10.1038/39321 CrossRefPubMedGoogle Scholar
  44. Wyss-Coray T, Lin C, Sanan DA et al (2000) Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am J Pathol 156:139–150CrossRefGoogle Scholar
  45. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377.  https://doi.org/10.1126/science.1241224 CrossRefPubMedGoogle Scholar
  46. Yeo H-G, Hong JJ, Lee Y et al (2019) Increased CD68/TGFβ Co-expressing microglia/macrophages after transient middle cerebral artery occlusion in rhesus monkeys. Exp Neurobiol 28:458–473.  https://doi.org/10.5607/en.2019.28.4.458 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410.  https://doi.org/10.1523/JNEUROSCI.6221-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang J-X, Xing J-G, Wang L-L et al (2017) Luteolin inhibits fibrillary β-Amyloid1–40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-κB signaling pathways. Molecules 22:334.  https://doi.org/10.3390/molecules22030334 CrossRefPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2019

Authors and Affiliations

  • Matthew D. Howe
    • 1
  • J. Weldon Furr
    • 1
  • Yashasvee Munshi
    • 1
  • Meaghan A. Roy-O’Reilly
    • 1
  • Michael E. Maniskas
    • 1
  • Edward C. Koellhoffer
    • 1
  • John d’Aigle
    • 1
  • Lauren H. Sansing
    • 2
  • Louise D. McCullough
    • 1
  • Akihiko Urayama
    • 1
    Email author
  1. 1.Department of Neurology, McGovern Medical SchoolUniversity of Texas Health Science CenterHoustonUSA
  2. 2.Department of NeurologyYale University School of MedicineNew HavenUSA

Personalised recommendations