Advertisement

GeroScience

pp 1–23 | Cite as

Nanodelivery of phytobioactive compounds for treating aging-associated disorders

  • Oleh LushchakEmail author
  • Olha Strilbytska
  • Alexander Koliada
  • Alina Zayachkivska
  • Nadia Burdyliuk
  • Ihor Yurkevych
  • Kenneth B. Storey
  • Alexander VaisermanEmail author
Review
  • 35 Downloads

Abstract

Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.

Keywords

Aging Age-associated disorder Phytobioactive compound Bioavailability Nanoparticle Antioxidant Anti-inflammatory activity 

Notes

Funding

The work was partially supported by the Science and Technology Center in Ukraine (#6274) to OL and by Natural Sciences and Engineering Research Council of Canada (#6793) to KBS.

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statements

This is a review article. It has not involved any human subjects and animal experiments.

References

  1. Ahmad MZ, Akhter S, Mohsin N, Abdel-Wahab BA, Ahmad J, Warsi MH, Rahman M, Mallick N, Ahmad FJ (2014) Transformation of curcumin from food additive to multifunctional medicine: Nanotechnology bridging the gap. Curr Drug Discov Technol 11:197–213.  https://doi.org/10.2174/1570163811666140616153436 CrossRefPubMedGoogle Scholar
  2. Ahmad N, Banala VT, Kushwaha P, Karvand A, Sharma S, Tripathi AK, Verma A, Trivedi R, Mishra PR (2016) Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. RSC Adv 6:97613–97628.  https://doi.org/10.1039/C6RA17141A CrossRefGoogle Scholar
  3. Ahmad K, Rabbani G, Baig MH, Lim JH, Khan ME, Lee EJ, Ashraf GM, Choi I (2018) Nanoparticle-based drugs: A potential armamentarium of effective anti-cancer therapies. Curr Drug Metab 19:839–846.  https://doi.org/10.2174/1389200218666170823115647 CrossRefPubMedGoogle Scholar
  4. Ahn J, Jeong J, Lee H, Sung MJ, Jung CH, Lee H, Hur J, Park JH, Jang YJ, Ha TY (2017) Poly(lactic-co-glycolic acid) nanoparticles potentiate the protective effect of curcumin against bone loss in ovariectomized rats. J Biomed Nanotech 13:688–698.  https://doi.org/10.1166/jbn.2017.2372 CrossRefGoogle Scholar
  5. Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS (2018) Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials (Basel) 8:E634.  https://doi.org/10.3390/nano8090634 CrossRefGoogle Scholar
  6. Alam MM, Abdullah KM, Singh BR, Naqvi AH, Naseem I (2016) Ameliorative effect of quercetin nanorods on diabetic mice: mechanistic and therapeutic strategies. RSC Adv 6:55092–55103.  https://doi.org/10.1039/C6RA04821H CrossRefGoogle Scholar
  7. Alejandro P, Constantinescu F (2018) A review of osteoporosis in the older adult: An update. Rheum Dis Clin North Am 44:437–451.  https://doi.org/10.1016/j.rdc.2018.03.004 CrossRefPubMedGoogle Scholar
  8. Alfaras I, Di Germanio C, Bernier M, Csiszar A, Ungvari Z, Lakatta EG, de Cabo R (2016) Pharmacological strategies to retard cardiovascular aging. Circ Res 118:1626–1642.  https://doi.org/10.1161/CIRCRESAHA.116.307475 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ameruoso A, Palomba R, Palange AL, Cervadoro A, Lee A, Mascolo DD, Decuzzi P (2017) Ameliorating amyloid-β fibrils triggered inflammation via curcumin-loaded polymeric nanoconstructs. Front Immunol 8:1411.  https://doi.org/10.3389/fimmu.2017.01411 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Amiot MJ, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17:573–586.  https://doi.org/10.1111/obr.12409 CrossRefPubMedGoogle Scholar
  11. Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacog Rev 10:84–89.  https://doi.org/10.4103/0973-7847.194044 CrossRefGoogle Scholar
  12. Anand K, Tiloke C, Naidoo P, Chuturgoon AA (2017) Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol B 173:626–639.  https://doi.org/10.1016/j.jphotobiol.2017.06.028 CrossRefPubMedGoogle Scholar
  13. Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. JJ Control Release 190:15–28.  https://doi.org/10.1016/j.jconrel.2014.03.053 CrossRefGoogle Scholar
  14. Arora R, Kuhad A, Kaur IP, Chopra K (2015) Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur J Pain 19:40–952.  https://doi.org/10.1002/ejp.620 CrossRefGoogle Scholar
  15. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S (2017) Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 24:61–74.  https://doi.org/10.1080/10717544.2016.1228718 CrossRefPubMedGoogle Scholar
  16. Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Vandelli MA, Tosi G, Grabrucker AM (2017) Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526:413–424.  https://doi.org/10.1016/j.ijpharm.2017.05.015 CrossRefPubMedGoogle Scholar
  17. Barry M, Pearce H, Cross L, Tatullo M, Gaharwar AK (2016) Advances in nanotechnology for the treatment of osteoporosis. Curr Osteoporos Rep 14:87–94.  https://doi.org/10.1007/s11914-016-0306-3 CrossRefPubMedGoogle Scholar
  18. Bayón-Cordero L, Alkorta I, Arana L (2019) Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 9:E474.  https://doi.org/10.3390/nano9030474 CrossRefGoogle Scholar
  19. Beard JR, Bloom DE (2015) Towards a comprehensive public health response to population ageing. Lancet 385:658–661.  https://doi.org/10.1016/S0140-6736(14)61461-6 CrossRefPubMedGoogle Scholar
  20. Behloul N, Wu G (2013) Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 698:31–38.  https://doi.org/10.1016/j.ejphar.2012.11.013 CrossRefPubMedGoogle Scholar
  21. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35.  https://doi.org/10.1038/s41698-017-0038-6 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bhalekar MR, Madgulkar AR, Desale PS, Marium G (2017) Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm 43:1003–1010.  https://doi.org/10.1080/03639045.2017.1291666 CrossRefPubMedGoogle Scholar
  23. Bilia AR, Piazzini V, Guccione C, Risaliti L, Asprea M, Capecchi G, Bergonzi MC (2017) Improving on nature: The role of nanomedicine in the development of clinical natural drugs. Planta Med 83:66–381.  https://doi.org/10.1055/s-0043-102949 CrossRefGoogle Scholar
  24. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:5698931.  https://doi.org/10.1155/2016/5698931 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bjelakovic G, Nikolova D, Gluud C (2014) Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care 17:40–44.  https://doi.org/10.1097/MCO.0000000000000009 CrossRefPubMedGoogle Scholar
  26. Borel T, Sabliov CM (2014) Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu Rev Food Sci Technol 5:197–213.  https://doi.org/10.1146/annurev-food-030713-092354 CrossRefPubMedGoogle Scholar
  27. Camins A, Junyent F, Verdaguer E, Beas-Zarate C, Rojas-Mayorquín AE, Ortuño-Sahagún D, Pallàs M (2009) Resveratrol: An antiaging drug with potential therapeutic applications in treating diseases. Pharmaceuticals (Basel) 2:194–205.  https://doi.org/10.3390/ph2030194 CrossRefGoogle Scholar
  28. Campesi I, Marino M, Cipolletti M, Romani A, Franconi F (2018) Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 57:2677–2691.  https://doi.org/10.1007/s00394-018-1695-0 CrossRefPubMedGoogle Scholar
  29. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571:183–192.  https://doi.org/10.1038/s41586-019-1365-2 CrossRefPubMedGoogle Scholar
  30. Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA, Barenys M, Auladell C, Folch J, Souto EB, Camins A, Turowski P, García ML (2019) Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. J Control Release 301:62–75.  https://doi.org/10.1016/j.jconrel.2019.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chan H, Král P (2018) Nanoparticles self–assembly within lipid bilayers. ACS Omega 3:10631–10637.  https://doi.org/10.1021/acsomega.8b01445 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chauhan AS (2015) Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann N Y Acad Sci 1348:134–140.  https://doi.org/10.1111/nyas.12816 CrossRefPubMedGoogle Scholar
  33. Chavva SR, Deshmukh SK, Kanchanapally R, Tyagi N, Coym JW, Singh AP, Singh S (2019) Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: potential synergistic interactions. Nanomaterials (Basel) 9:E396.  https://doi.org/10.3390/nano9030396 CrossRefGoogle Scholar
  34. Chen R, Wang S, Zhang J, Chen M, Wang Y (2014) Aloe-emodin loaded solid lipid nanoparticles: formulation design and in vitro anti-cancer study. Drug Deliv 22:666–674.  https://doi.org/10.3109/10717544.2014.882446 CrossRefPubMedGoogle Scholar
  35. Chen Y, Zhang H, Yang J, Sun H (2015) Improved antioxidant capacity of optimization of a self-microemulsifying drug delivery system for resveratrol. Molecules 20:21167–21177.  https://doi.org/10.3390/molecules201219750 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chen S, Jiang H, Wu X, Fang J (2016, 2016) Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm:9340637.  https://doi.org/10.1155/2016/9340637 Google Scholar
  37. Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L (2013) Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 15:324–336.  https://doi.org/10.1208/s12248-012-9444-4 CrossRefPubMedGoogle Scholar
  38. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS (2018) Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 413:122–134.  https://doi.org/10.1016/j.canlet.2017.11.002 CrossRefPubMedGoogle Scholar
  39. Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N (2012) Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2:112–123.  https://doi.org/10.1007/s13346-012-0063-5 CrossRefPubMedGoogle Scholar
  40. Chu C, Deng J, Man Y, Qu Y (2017) Green tea extracts epigallocatechin-3-gallate for different treatments. Biomed Res Int 2017:5615647.  https://doi.org/10.1155/2017/5615647 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cleutjens FAHM, Boonen AERCH, van Onna MGB (2019) Geriatric syndromes in patients with rheumatoid arthritis: a literature overview. Clin Exp Rheumatol 37:496–501PubMedGoogle Scholar
  42. Conte R, Marturano V, Peluso G, Calarco A, Cerruti P (2017) Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int J Mol Sci 18:E709.  https://doi.org/10.3390/ijms18040709 CrossRefPubMedGoogle Scholar
  43. Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR (2018) New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit Rev Food Sci Nutr 58:942–957.  https://doi.org/10.1080/10408398.2016.1233860 CrossRefPubMedGoogle Scholar
  44. Crimmins EM (2015) Lifespan and healthspan: Past, present, and promise. Gerontologist 55:901–911.  https://doi.org/10.1093/geront/gnv130 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Crucho CIC, Barros MT (2017) Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl 80:771–784.  https://doi.org/10.1016/j.msec.2017.06.004 CrossRefPubMedGoogle Scholar
  46. Csiszár A, Csiszar A, Pinto JT, Gautam T, Kleusch C, Hoffmann B, Tucsek Z, Toth P, Sonntag WE, Ungvari Z (2015) Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J Gerontol A Biol Sci Med Sci 70:303–313.  https://doi.org/10.1093/gerona/glu029 CrossRefPubMedGoogle Scholar
  47. Cui T, Zhang S, Sun H (2017) Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 37:1253–1260.  https://doi.org/10.3892/or.2017.5345 CrossRefPubMedGoogle Scholar
  48. da Costa IM, Cavalcanti JRLP, de Queiroz DB, do Rêgo ACM, Araújo Filho I, Parente P, Botelho MA, Guzen FP (2017) Supplementation with herbal extracts to promote behavioral and neuroprotective effects in experimental models of Parkinson’s disease: a systematic review. Phytother Res 31:959–970.  https://doi.org/10.1002/ptr.5813 CrossRefPubMedGoogle Scholar
  49. da Rocha Lindner G, Bonfanti Santos D, Colle D, Gasnhar Moreira EL, Daniel Prediger R, Farina M, Khalil NM, Mara Mainardes R (2015) Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond) 10:1127–1138.  https://doi.org/10.2217/nnm.14.165 CrossRefGoogle Scholar
  50. da Silva Santos V, Badan Ribeiro AP, Andrade Santana MH (2019) Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res Int 122:610–626.  https://doi.org/10.1016/j.foodres.2019.01.032 CrossRefPubMedGoogle Scholar
  51. Date AA, Hanes J, Ensign LM (2016) Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Releas 240:504–526.  https://doi.org/10.1016/j.jconrel.2016.06.016 CrossRefGoogle Scholar
  52. de la Torre C, Ceña V (2018) The delivery challenge in neurodegenerative disorders: the nanoparticles role in Alzheimer's disease therapeutics and diagnostics. Pharmaceutics 10:E190.  https://doi.org/10.3390/pharmaceutics10040190 CrossRefPubMedGoogle Scholar
  53. Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, Mendoza-Muñoz N, González-Torres M, Florán B, Cortés H, Leyva-Gómez G (2019) Formulations of curcumin nanoparticles for brain diseases. Biomolecules 9:E56.  https://doi.org/10.3390/biom9020056 CrossRefPubMedGoogle Scholar
  54. Deng W, Wang H, Wu B, Zhang X (2019) Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B 9:74–86.  https://doi.org/10.1016/j.apsb.2018.09.009 CrossRefPubMedGoogle Scholar
  55. Dewangan AK, Perumal Y, Pavurala N, Chopra K, Mazumder S (2017) Preparation, characterization and anti-inflammatory effects of curcumin loaded carboxymethyl cellulose acetate butyrate nanoparticles on adjuvant induced arthritis in rats. J Drug Deliv Sci Technol 41:269–279.  https://doi.org/10.1016/j.jddst.2017.07.022 CrossRefGoogle Scholar
  56. Dhawan S, Kapil R, Singh B (2011) Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 63:342–351.  https://doi.org/10.1111/j.2042-7158.2010.01225.x CrossRefPubMedGoogle Scholar
  57. Dhivya R, Ranjani J, Rajendhran J, Mayandi J, Annaraj J (2018) Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater Sci Eng C Mater Biol Appl 82:182–189.  https://doi.org/10.1016/j.msec.2017.08.058 CrossRefPubMedGoogle Scholar
  58. Elliot PJ, Jirousek M (2008) Sirtuins: novel targets for metabolic disease. Curr Opin Investig Drugs 9:371–378.  https://doi.org/10.1016/j.bbrc.2008.06.048 CrossRefGoogle Scholar
  59. El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 177:389–398.  https://doi.org/10.1016/j.colsurfb.2019.02.024 CrossRefPubMedGoogle Scholar
  60. Eng QY, Thanikachalam PV, Ramamurthy S (2018) Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 210:296–310.  https://doi.org/10.1016/j.jep.2017.08.035 CrossRefPubMedGoogle Scholar
  61. Fan Y, Yi J, Zhang Y, Yokoyama W (2018) Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem 239:1210–1218.  https://doi.org/10.1016/j.foodchem.2017.07.075 CrossRefPubMedGoogle Scholar
  62. Flora G, Gupta D, Tiwari A (2013) Nanocurcumin: A promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Sys 30:331–368.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007236 CrossRefGoogle Scholar
  63. Franco R, Navarro G, Martínez-Pinilla E (2019) Hormetic and mitochondria–related mechanisms of antioxidant action of phytochemicals. Antioxidants (Basel) 8:E373.  https://doi.org/10.3390/antiox8090373 CrossRefGoogle Scholar
  64. Frasca D, Blomberg BB, Paganelli R (2017) Aging, obesity, and inflammatory age-related diseases. Front Immunol 8:1745.  https://doi.org/10.3389/fimmu.2017.01745 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Frias I, Neves AR, Pinheiro M, Reis S (2016) Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des Devel Ther 10:3519–3528.  https://doi.org/10.2147/DDDT.S109589 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591.  https://doi.org/10.2147/IJN.S36111 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Frozza RL, Bernardi A, Paese K, Hoppe JB, da Silva T, Battastini AM, Pohlmann AR, Guterres SS, Salbego C (2010) Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 6:694–703.  https://doi.org/10.1166/jbn.2010.1161 CrossRefPubMedGoogle Scholar
  68. Ganesan P, Ko HM, Kim IS, Choi DK (2015) Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine 10:6757–6772.  https://doi.org/10.2147/IJN.S93918 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ganesan P, Arulselvan P, Choi DK (2017) Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. IInt J Nanomedicine 12:1097–1111.  https://doi.org/10.2147/IJN.S124601 CrossRefGoogle Scholar
  70. Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK (2018a) Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments Int J Nanomedicine 13:6109-6121. 10.2147 /IJN.S178077.CrossRefGoogle Scholar
  71. Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK (2018b) Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 13:1569–1583.  https://doi.org/10.2147/IJN.S155593 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6:268–286.  https://doi.org/10.1016/j.apsb.2016.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, Huang N, Qian Z, Wei Y (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4:7021–7030.  https://doi.org/10.1039/c2nr32181e CrossRefPubMedGoogle Scholar
  74. Gigliobianco MR, Casadidio C, Censi R, Di Martino P (2018) Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics 10:E134.  https://doi.org/10.3390/pharmaceutics10030134 CrossRefPubMedGoogle Scholar
  75. Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biagi M (2018) Phytotherapy in the management of diabetes: a review. Molecules 23:E105.  https://doi.org/10.3390/molecules23010105 CrossRefPubMedGoogle Scholar
  76. Granja A, Frias I, Rute Neves A, Pinheiro M, Reis S (2017) Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int 2017:5813793.  https://doi.org/10.1155/2017/5813793 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Grottkau BE, Cai X, Wang J, Yang X, Lin Y (2013) Polymeric nanoparticles for a drug delivery system. Curr Drug Metab 14:840–846.  https://doi.org/10.1007/978-1-60761-609-2_11 CrossRefPubMedGoogle Scholar
  78. Gruber J, Halliwell B (2017) Approaches for extending human healthspan: from antioxidants to healthspan pharmacology. Essays Biochem 61:389–399.  https://doi.org/10.1042/EBC20160091 CrossRefPubMedGoogle Scholar
  79. Gu M, Wang X, Toh TB, Chow EK (2018) Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today 23:1043–1052.  https://doi.org/10.1016/j.drudis.2017.11.009 CrossRefPubMedGoogle Scholar
  80. Gupta R, Xie H (2018) Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37:209–230.  https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hajialyani M, Tewari D, Sobarzo-Sánchez E, Nabavi SM, Farzaei MH, Abdollahi M (2018) Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. Int J Nanomedicine 13:5023–5043.  https://doi.org/10.2147/IJN.S174072 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Han Q, Wang H, Cai S, Liu X, Zhang Y, Yang L, Wang C, Yang R (2018) Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity. J Mater Chem B 6:1387–1393.  https://doi.org/10.1039/C7TB03053C CrossRefGoogle Scholar
  83. Hansen M, Kennedy BK (2016) Does longer lifespan mean longer healthspan? Trends Cell Biol 26:565–568.  https://doi.org/10.1016/j.tcb.2016.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hazzah HA, Farid RM, Nasra MM, Zakaria M, Gawish Y, El-Massik MA, Abdallah OY (2016) A new approach for treatment of precancerous lesions with curcumin solid-lipid nanoparticle-loaded gels: in vitro and clinical evaluation. Drug Deliv 23:1409–1419.  https://doi.org/10.3109/10717544.2015.1065524 CrossRefPubMedGoogle Scholar
  85. Heiss C, Spyridopoulos I, Haendeler J (2018) Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. Exp Gerontol 109:108–118.  https://doi.org/10.1016/j.exger.2017.06.015 CrossRefPubMedGoogle Scholar
  86. Heo DN, Ko WK, Moon HJ, Kim HJ, Lee SJ, Lee JB, Bae MS, Yi JK, Hwang YS, Bang JB, Kim EC, Do SH, Kwon IK (2014) Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS Nano 8:12049–12062.  https://doi.org/10.1021/nn504329u CrossRefPubMedGoogle Scholar
  87. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 11:673–692.  https://doi.org/10.2217/nnm.16.5 CrossRefGoogle Scholar
  88. Hou CY, Tain YL, Yu HR, Huang LT (2019) The effects of resveratrol in the treatment of metabolic syndrome. Int J Mol Sci 20:E535.  https://doi.org/10.3390/ijms20030535 CrossRefPubMedGoogle Scholar
  89. Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Badshah H, Munir A (2018) Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol 102:9449–9470.  https://doi.org/10.1007/s00253-018-9352-3 CrossRefPubMedGoogle Scholar
  90. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–127.  https://doi.org/10.1007/s13205-014-0214-0 CrossRefGoogle Scholar
  91. Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS (2015) Opportunities for nano-formulations in type 2 diabetes mellitus treatments. Curr Pharm Biotechno 16:853–870.  https://doi.org/10.2174/1389201016666150727120618 CrossRefGoogle Scholar
  92. Kakkar V, Kaur IP (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49:2906–2913.  https://doi.org/10.1016/j.fct.2011.08.006 CrossRefPubMedGoogle Scholar
  93. Kakkar V, Muppu SK, Chopra K, Kaur IP (2013) Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 85:339–345.  https://doi.org/10.1016/j.ejpb.2013.02.005 CrossRefPubMedGoogle Scholar
  94. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled–release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663.  https://doi.org/10.1021/acs.chemrev.5b00346 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer's disease. Drug Deliv 25:307–320.  https://doi.org/10.1080/10717544.2018.1428243 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kawabata K, Mukai R, Ishisaka A (2015) Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 6:1399–1417.  https://doi.org/10.1039/c4fo01178c CrossRefPubMedGoogle Scholar
  97. Kermanizadeh A, Powell LG, Stone V, Møller P (2018) Nanodelivery systems and stabilized solid-drug nanoparticles for orally administered medicine: current landscape. Int J Nanomedicine 13:7575–7605.  https://doi.org/10.2147/IJN.S177418 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. J Pharm Sci 9:304–316.  https://doi.org/10.1016/j.ajps.2014.05.005 CrossRefGoogle Scholar
  99. Khan I, Kumar H, Mishra G, Gothwal A, Kesharwani P, Gupta U (2017) Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Curr Pharm Des 23:5315–5326.  https://doi.org/10.2174/1381612823666170829164828 CrossRefPubMedGoogle Scholar
  100. Kim JT, Barua S, Kim H, Hong SC, Yoo SY, Jeon H, Cho Y, Gil S, Oh K, Lee J (2017) Absorption study of genistein using solid lipid microparticles and nanoparticles: Control of oral bioavailability by particle sizes. Biomol Ther (Seoul) 25:452–459.  https://doi.org/10.4062/biomolther.2017.095 CrossRefGoogle Scholar
  101. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22:E1445.  https://doi.org/10.3390/molecules22091445 CrossRefPubMedGoogle Scholar
  102. Krishnamoorthy K, Mahalingam M (2015) Selection of a suitable method for the preparation of polymeric nanoparticles: multi–criteria decision making approach. Adv Pharm Bull 5:57–67.  https://doi.org/10.5681/apb.2015.008 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Krupkova O, Ferguson SJ, Wuertz-Kozak K (2016) Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 37:1–12.  https://doi.org/10.1016/j.jnutbio.2016.01.002 CrossRefPubMedGoogle Scholar
  104. Kumar A, Ahuja A, Ali J, Baboota S (2010) Conundrum and therapeutic potential of curcumin in drug delivery. Crit Rev Ther Drug Carrier Syst 27:279–312.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i4 CrossRefPubMedGoogle Scholar
  105. Kumari P, Muddineti O S, Rompicharla SV, Ghanta P, B B N AK, Ghosh B, Biswas S (2017) Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv 24:209–223.  https://doi.org/10.1080/10717544.2016.1245365.CrossRefGoogle Scholar
  106. Kwon SH, Kim SY, Ha KW, Kang MJ, Huh JS, Im TJ, Kim YM, Park YM, Kang KH, Lee S, Chang JY, Lee J, Choi YW (2007) Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch Pharm Res 30:1138–1143.  https://doi.org/10.1007/BF02980249 CrossRefPubMedGoogle Scholar
  107. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P (2017) Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 9:E46.  https://doi.org/10.3390/pharmaceutics9040046 CrossRefPubMedGoogle Scholar
  108. Lee KZ (2006) Clinical trials of berberine chloride as pharmaceutical agent of type II diabetes. HBTCM 28:38–41.  https://doi.org/10.2337/db06-0006 CrossRefGoogle Scholar
  109. Lee GH, Lee SJ, Jeong SW, Kim HC, Park GY, Lee SG, Choi JH (2016) Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf B Biointerfaces 143:511–517.  https://doi.org/10.1016/j.colsurfb.2016.03.060 CrossRefPubMedGoogle Scholar
  110. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients 8:167.  https://doi.org/10.3390/nu8030167 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Li C, Ge X, Wang L (2017a) Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother 86:628–636.  https://doi.org/10.1016/j.biopha.2016.12.042 CrossRefPubMedGoogle Scholar
  112. Li M, Xin M, Guo C, Lin G, Wu X (2017b) New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm 43:1846–1857.  https://doi.org/10.1080/03639045.2017.1349787 CrossRefPubMedGoogle Scholar
  113. Li J, Zhang CX, Liu YM, Chen KL, Chen G (2017c) A comparative study of anti-aging properties and mechanism: resveratrol and caloric restriction. Oncotarget 8:65717–65729.  https://doi.org/10.18632/oncotarget.20084 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Li J, Zhou Y, Zhang W, Bao C, Xie Z (2017d) Relief of oxidative stress and cardiomyocyte apoptosis by using curcumin nanoparticles. Colloids Surf B Biointerfaces 153:174–182.  https://doi.org/10.1016/j.colsurfb.2017.02.023 CrossRefPubMedGoogle Scholar
  115. Li T, Liang W, Xiao X, Qian Y (2018) Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int J Nanomedicine 13:7349–7362.  https://doi.org/10.2147/IJN.S179678 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Lian B, Wu M, Feng Z, Deng Y, Zhong C, Zhao X (2019) Folate-conjugated human serum albumin-encapsulated resveratrol nanoparticles: preparation, characterization, bioavailability and targeting of liver tumors. Artif Cells Nanomed Biotechnol 47:154–165.  https://doi.org/10.1080/21691401.2018.1548468 CrossRefPubMedGoogle Scholar
  117. Lim H, Park H, Kim HP (2015) Effects of flavonoids on senescence–associated secretory phenotype formation from bleomycin–induced senescence in BJ fibroblasts. Biochem Pharmacol 96:337–348.  https://doi.org/10.1016/j.bcp.2015.06.013 CrossRefPubMedGoogle Scholar
  118. Lim H, Park BK, Shin SY, Kwon YS, Kim HP (2017) Methyl caffeate and some plant constituents inhibit age–related inflammation: effects on senescence–associated secretory phenotype (SASP) formation. Arch Pharm Res 40:524–535.  https://doi.org/10.1007/s12272-017-0909-y CrossRefPubMedGoogle Scholar
  119. Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. JJ Food Drug Anal 25:219–234.  https://doi.org/10.1016/j.jfda.2017.02.001 CrossRefGoogle Scholar
  120. Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MA, Pereira MC (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer's disease. Molecules 22:E277.  https://doi.org/10.3390/molecules22020277 CrossRefPubMedGoogle Scholar
  121. Luo CF, Yuan M, Chen MS, Liu SM, Zhu L, Huang BY, Liu XW, Xiong W (2011) Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int J Pharm 410:138–144.  https://doi.org/10.1016/j.ijpharm.2011.02.064 CrossRefPubMedGoogle Scholar
  122. Lushchak O, Zayachkivska A, Vaiserman A (2018) Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. Oxid Med Cell Longev 2018:3407375.  https://doi.org/10.1155/2018/3407375 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N (2018) Current concepts of neurodegenerative mechanisms in Alzheimer's disease. Biomed Res Int 2018:3740461.  https://doi.org/10.1155/2018/3740461 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD (2019) Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev.  https://doi.org/10.1002/med.21559 CrossRefGoogle Scholar
  125. Martín Giménez VM, Kassuha DE, Manucha W (2017) Nanomedicine applied to cardiovascular diseases: latest developments. Ther Adv Cardiovasc Dis 11:133–142.  https://doi.org/10.1177/1753944717692293 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new "smart-foods" for health. Foods 7:E72.  https://doi.org/10.3390/foods7050072 CrossRefPubMedGoogle Scholar
  127. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochemistry 2013:238428.  https://doi.org/10.1155/2013/238428 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Meena R, Kumar S, Kumar R, Gaharwar US, Rajamani P (2017) PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed Pharmacother 94:944–954.  https://doi.org/10.1016/j.biopha.2017.07.151 CrossRefPubMedGoogle Scholar
  129. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196.  https://doi.org/10.1016/S0169-409X(01)00105-3 CrossRefPubMedGoogle Scholar
  130. Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603.  https://doi.org/10.3390/ijms12095592 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM (2018) Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics 10:E191.  https://doi.org/10.3390/pharmaceutics10040191 CrossRefPubMedGoogle Scholar
  132. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289.  https://doi.org/10.4103/0975-7406.72127 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Monsalve B, Concha-Meyer A, Palomo I, Fuentes E (2017) Mechanisms of endothelial protection by natural bioactive compounds from fruit and vegetables. An Acad Bras Cienc 89:615–633.  https://doi.org/10.1590/0001-3765201720160509. CrossRefPubMedGoogle Scholar
  134. Montalban MG, Coburn JM, Lozano-Perez AA, Cenis JL, Villora G, Kaplan DL (2018) Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials (Basel) 8:E126.  https://doi.org/10.3390/nano8020126 CrossRefGoogle Scholar
  135. Moss DM, Curley P, Kinvig H, Hoskins C, Owen A (2018) The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol 12:223–236.  https://doi.org/10.1080/17474124.2018.1399794 CrossRefPubMedGoogle Scholar
  136. Muradian K, Vaiserman A, Min KJ, Fraifeld VE (2015) Fucoxanthin and lipid metabolism: A minireview. Nutr Metab Cardiovasc Dis 25:891–897.  https://doi.org/10.1016/j.numecd.2015.05.010 CrossRefPubMedGoogle Scholar
  137. Myers A, Lithgow GJ (2019) Drugs that target aging: how do we discover them? Expert Opin Drug Discov 14:541–548.  https://doi.org/10.1080/17460441.2019.1597049 CrossRefPubMedGoogle Scholar
  138. Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, Park BJ (2013) Korean meta–analysis study group. efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta–analysis of randomised controlled trials. BMJ 346:f10.  https://doi.org/10.1136/bmj.f10 CrossRefGoogle Scholar
  139. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5:305–313.  https://doi.org/10.15171/apb.2015.043 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Ni W, Li Z, Liu Z, Ji Y, Wu L, Sun S, Jian X, Gao X (2019) Dual-targeting nanoparticles: codelivery of curcumin and 5-fluorouracil for synergistic treatment of hepatocarcinoma. J Pharm Sci 108:1284–1295.  https://doi.org/10.1016/j.xphs.2018.10.042 CrossRefPubMedGoogle Scholar
  141. Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB (2018) Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 36:1633–1648.  https://doi.org/10.1016/j.biotechadv.2018.03.014 CrossRefPubMedGoogle Scholar
  142. Patisaul HB (2017) Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 76:130–144.  https://doi.org/10.1017/S0029665116000677 CrossRefPubMedGoogle Scholar
  143. Perrott KM, Wiley CD, Desprez PY, Campisi J (2017) Apigenin suppresses the senescence–associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience 39:161–173.  https://doi.org/10.1007/s11357-017-9970-1 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Piazzini V, Lemmi B, D’Ambrosio M, Cinci L, Luceri C, Bilia AR, Bergonzi MC (2018) Nanostructured lipid carriers as promising delivery systems for plant extracts: The case of silymarin. Appl Sci 8:1163.  https://doi.org/10.3390/app8071163 CrossRefGoogle Scholar
  145. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, Jacobson E, Gumbleton T, Oakervee H, Cavenagh J (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 160:714–717.  https://doi.org/10.1111/bjh.12154 CrossRefPubMedGoogle Scholar
  146. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H (2019) Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1527.  https://doi.org/10.1002/wnan.1527 CrossRefPubMedGoogle Scholar
  147. Rabinovici GD (2019) Late-onset Alzheimer disease. Continuum (Minneap Minn) 25:14–33.  https://doi.org/10.1212/CON.0000000000000700 CrossRefGoogle Scholar
  148. Rahman M, Beg S, Verma A, Al Abbasi FA, Anwar F, Saini S, Akhter S, Kumar V (2017) Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: challenges and scope of nano/submicromedicine in its effective delivery. J Pharm Pharmacol 69:1–14.  https://doi.org/10.1111/jphp.12661 CrossRefPubMedGoogle Scholar
  149. Ramalingam P, Ko YT (2015) Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res 32:89–402.  https://doi.org/10.1007/s11095-014-1469-1 CrossRefGoogle Scholar
  150. Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces 139:52–61.  https://doi.org/10.1016/j.colsurfb.2015.11.050 CrossRefPubMedGoogle Scholar
  151. Ramalingam P, Yoo SW, Ko YT (2016) Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int 84:113–119.  https://doi.org/10.1016/j.foodres.2016.03.031 CrossRefGoogle Scholar
  152. Rassu G, Porcu EP, Fancello S, Obinu A, Senes N, Galleri G, Migheli R, Gavini E, Giunchedi P (2018) Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics 11:E8.  https://doi.org/10.3390/pharmaceutics11010008 CrossRefPubMedGoogle Scholar
  153. Rastogi R, Anand S, Koul V (2009) Flexible polymerosomes––an alternative vehicle for topical delivery. Colloids Surf B Biointerfaces 72:161–166.  https://doi.org/10.1016/j.colsurfb.2009.03.022 CrossRefPubMedGoogle Scholar
  154. Ravindran S, Suthar JK, Rokade R, Deshpande P, Singh P, Pratinidhi A, Khambadkhar R, Utekar S (2018) Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr Drug Metab 19:327–334.  https://doi.org/10.2174/1389200219666180305154119 CrossRefPubMedGoogle Scholar
  155. Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70.  https://doi.org/10.1016/j.jsps.2017.10.012 CrossRefPubMedGoogle Scholar
  156. Rodenak-Kladniew B, Islan GA, de Bravo MG, Durán N, Castro GR (2017) Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces 154:123–132.  https://doi.org/10.1016/j.colsurfb.2017.03.021 CrossRefPubMedGoogle Scholar
  157. Rousseaux MWC, Shulman JM, Jankovic J (2017) Progress toward an integrated understanding of Parkinson's disease. F1000Res 6:1121.  https://doi.org/10.12688/f1000research.11820.1 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Saeedi M, Eslamifar M, Khezri K, Dizaj SM (2019) Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 111:666–675.  https://doi.org/10.1016/j.biopha.2018.12.133 CrossRefPubMedGoogle Scholar
  159. Saha S, Sadhukhan P, Sil PC (2014) Genistein: a phytoestrogen with multifaceted therapeutic properties. Mini Rev Med Chem 14:920–940.  https://doi.org/10.2174/1389557514666141029233442 CrossRefGoogle Scholar
  160. Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Anil Kumar NV, Martins N, Sharifi-Rad J (2019) The therapeutic potential of curcumin: A review of clinical trials. Eur J Med Chem 163:527–545.  https://doi.org/10.1016/j.ejmech.2018.12.016 CrossRefPubMedGoogle Scholar
  161. Santín-Márquez R, Alarcón-Aguilar A, López-Diazguerrero NE, Chondrogianni N, Königsberg M (2019) Sulforaphane – role in aging and neurodegeneration. Geroscience (In press).Google Scholar
  162. Sarker MR, Franks SF (2018) Efficacy of curcumin for age–associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience 40:73–95.  https://doi.org/10.1007/s11357-018-0017-z CrossRefPubMedPubMedCentralGoogle Scholar
  163. Seals DR, Melov S (2014) Translational geroscience: emphasizing function to achieve optimal longevity. Aging (Albany NY) 6:718–730.  https://doi.org/10.18632/aging.100694 CrossRefGoogle Scholar
  164. Seals DR, Justice JN, LaRocca TJ (2016) Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol 594:2001–2024.  https://doi.org/10.1113/jphysiol.2014.282665 CrossRefPubMedGoogle Scholar
  165. Seca AML, Pinto DCGA (2018) Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar Drugs 16:E237.  https://doi.org/10.3390/md16070237 CrossRefPubMedGoogle Scholar
  166. Shah SMA, Akram M, Riaz M, Munir N, Rasool G (2019) Cardioprotective potential of plant–derived molecules: a scientific and medicinal approach. Dose Response 17:1559325819852243.  https://doi.org/10.1177/1559325819852243 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Shi M, Shi YL, Li XM, Yang R, Cai ZY, Li QS, Ma SC, Ye JH, Lu JL, Liang YR, Zheng XQ (2018) Food-grade encapsulation systems for (−)-epigallocatechin gallate. Molecules 23:445.  https://doi.org/10.3390/molecules23020445 CrossRefPubMedCentralGoogle Scholar
  168. Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H (2016) Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J Pharm Pharmacol 68:1481–1500.  https://doi.org/10.1111/jphp.12611 CrossRefPubMedGoogle Scholar
  169. Siddiqui IA, Bharali DJ, Nihal M, Adhami VM, Khan N, Chamcheu JC, Khan MI, Shabana S, Mousa SA, Mukhtar H (2014) Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine 10:1619–1626.  https://doi.org/10.1016/j.nano.2014.05.007 CrossRefPubMedGoogle Scholar
  170. Silva Adaya D, Aguirre-Cruz L, Guevara J, Ortiz-Islas E (2017) Nanobiomaterials' applications in neurodegenerative diseases. J Biomater Appl 31:953–984.  https://doi.org/10.1177/0885328216659032 CrossRefPubMedGoogle Scholar
  171. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821.  https://doi.org/10.1016/j.bcp.2011.07.093 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA (2018) EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer's disease. Front Aging Neurosci 10:244.  https://doi.org/10.3389/fnagi.2018.00244 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC (2019) Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev.  https://doi.org/10.1002/med.21565 CrossRefGoogle Scholar
  174. Siu FY, Ye S, Lin H, Li S (2018) Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: enhanced bioavailability and in vitro anti-inflammatory activity. Int J Nanomedicine 13:4133–4144.  https://doi.org/10.2147/IJN.S164235 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, Groop PH, Handelsman Y, Insel RA, Mathieu C, McElvaine AT, Palmer JP, Pugliese A, Schatz DA, Sosenko JM, Wilding JP, Ratner RE (2017) Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 66:241–255.  https://doi.org/10.2337/db16-0806 CrossRefPubMedGoogle Scholar
  176. Smoliga JM, Blanchard O (2014) Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules 19:17154–17172.  https://doi.org/10.3390/molecules191117154 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Smoliga JM, Vang O, Baur JA (2012) Challenges of translating basic research into therapeutics: resveratrol as an example. J Gerontol A Biol Sci Med Sc 67:158–167.  https://doi.org/10.1093/gerona/glr062 CrossRefGoogle Scholar
  178. Somu P, Paul S (2019) Supramolecular nanoassembly of lysozyme and α-lactalbumin (apo α-LA) exhibits selective cytotoxicity and enhanced bioavailability of curcumin to cancer cells. Colloids Surf B Biointerfaces 178:297–306.  https://doi.org/10.1016/j.colsurfb.2019.03.016 CrossRefPubMedGoogle Scholar
  179. Stolarczyk EU, Stolarczyk K, Łaszcz M, Kubiszewski M, Maruszak W, Olejarz W, Bryk D (2017) Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur J Pharm Sci 96:176–185 https://www.ncbi.nlm.nih.gov/pubmed/27644892 CrossRefGoogle Scholar
  180. Sunagawa Y, Wada H, Suzuki H, Sasaki H, Imaizumi A, Fukuda H, Hashimoto T, Katanasaka Y, Shimatsu A, Kimura T, Kakeya H, Fujita M, Hasegawa K, Morimoto T (2012) A novel drug delivery system of oral curcumin markedly improves efficacy of treatment for heart failure after myocardial infarction in rats. Biol Pharm Bull 35:139–144.  https://doi.org/10.1248/bpb.35.139 CrossRefPubMedGoogle Scholar
  181. Sundar DKS, Houreld NN, Abrahamse H (2018) Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules 23:E835.  https://doi.org/10.3390/molecules23040835 CrossRefGoogle Scholar
  182. Tan ME, He CH, Jiang W, Zeng C, Yu N, Huang W, Gao ZG, Xing JG (2017) Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats. Int J Nanomedicine 12:253–3265.  https://doi.org/10.2147/IJN.S131893 CrossRefGoogle Scholar
  183. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age–related diseases. Front Pharmacol 9:1162.  https://doi.org/10.3389/fphar.2018.01162 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Tang P, Sun Q, Yang H, Tang B, Pu H, Li H (2018) Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm 545:74–83.  https://doi.org/10.1016/j.ijpharm.2018.04.060 CrossRefPubMedGoogle Scholar
  185. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Blood-brain delivery methods using nanotechnology. Pharmaceutics 10:269.  https://doi.org/10.3390/pharmaceutics10040269 CrossRefPubMedCentralGoogle Scholar
  186. Tsai YM, Jan WC, Chien CF, Lee WC, Lin LC, Tsai TH (2011) Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem 127:918–925.  https://doi.org/10.1016/j.foodchem.2011.01.059 CrossRefPubMedGoogle Scholar
  187. Tuguntaev RG, Okeke CI, Xu J, Li C, Wang PC, Liang XJ (2016) Nanoscale polymersomes as anti–cancer drug carriers applied for pharmaceutical delivery. Curr Pharm Des 22:2857–2865.  https://doi.org/10.2174/1381612822666160217142319 CrossRefPubMedGoogle Scholar
  188. Ullah F, Liang A, Rangel A, Gyengesi E, Niedermayer G, Münch G (2017) High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch Toxicol 91:1623–1634.  https://doi.org/10.1007/s00204-017-1939-4 CrossRefPubMedGoogle Scholar
  189. Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, Murfee WL, Pacher P, Csiszar A (2018a) Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol 15:555–565.  https://doi.org/10.1038/s41569-018-0030-z CrossRefPubMedPubMedCentralGoogle Scholar
  190. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A (2018b) Mechanisms of vascular aging. Circ Res 123:849–867.  https://doi.org/10.1161/CIRCRESAHA.118.311378 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Vaiserman A, Lushchak O (2017) Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives. J Transl Med 15:160.  https://doi.org/10.1186/s12967-017-1259-8 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Vaiserman AM, Marotta F (2016) Longevity-promoting pharmaceuticals: is it a time for implementation? Trends Pharmacol Sci 37:331–333.  https://doi.org/10.1016/j.tips.2016.02.003 CrossRefPubMedGoogle Scholar
  193. van der Vlies AJ, Morisaki M, Neng HI, Hansen EM, Hasegawa U (2019) Framboidal nanoparticles containing a curcumin-phenylboronic acid complex with antiangiogenic and anticancer activities. Bioconjug Chem 30:861–870.  https://doi.org/10.1021/acs.bioconjchem.9b00006 CrossRefPubMedGoogle Scholar
  194. van Onna M, Boonen A (2016) The challenging interplay between rheumatoid arthritis, ageing and comorbidities. BMC Musculoskelet Disord 17:184.  https://doi.org/10.1186/s12891-016-1038-3 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Vijayakumar A, Baskaran R, Jang YS, Oh SH, Yoo BK (2016) Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech 18:875–883.  https://doi.org/10.1208/s12249-016-0573-4 CrossRefPubMedGoogle Scholar
  196. Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. Int J Neurosci 125:717–725.  https://doi.org/10.3109/00207454.2014.982795 CrossRefPubMedGoogle Scholar
  197. Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y (2012) Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Int J Pharm 430:238–246.  https://doi.org/10.1016/j.ijpharm.2012.03.027 CrossRefPubMedGoogle Scholar
  198. Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, Wang Y, Chen M (2014a) Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech 15:834–844.  https://doi.org/10.1208/s12249-014-0112-0 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Wang L, Wang S, Chen R, Wang Y, Li H, Wang Y, Chen M (2014b) Oridonin loaded solid lipid nanoparticles enhanced antitumor activity in MCF-7 cells. J Nanomater 2014:903646.  https://doi.org/10.1155/2014/903646 CrossRefGoogle Scholar
  200. Wang J, Wang H, Zhu R, Liu Q, Fei J, Wang S (2015a) Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1b transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 53:475–483.  https://doi.org/10.1016/j.biomaterials.2015.02.116 CrossRefPubMedGoogle Scholar
  201. Wang J, Ma W, Tu P (2015b) Synergistically improved anti-tumor efficacy by co-delivery doxorubicin and curcumin polymeric micelles. Macromol Biosci 15:1252–1261.  https://doi.org/10.1002/mabi.201500043 CrossRefPubMedGoogle Scholar
  202. Wang L, Wang W, Rui Z, Zhou D (2016) The effective combination therapy against human osteosarcoma: doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv 23:3200–3208.  https://doi.org/10.3109/10717544.2016.1162875 CrossRefPubMedGoogle Scholar
  203. Wang W, Zhang L, Chen T, Guo W, Bao X, Wang D, Ren B, Wang H, Li Y, Wang Y, Chen S, Tang B, Yang Q, Chen C (2017) Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules 22:E1814.  https://doi.org/10.3390/molecules22111814 CrossRefPubMedGoogle Scholar
  204. Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R, Liu H, Wang Y, Yan L, Chen S, Yang Q, Chen C (2018a) Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules 23:E1578.  https://doi.org/10.3390/molecules23071578 CrossRefPubMedGoogle Scholar
  205. Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y, Zhao L, Zhang W (2018b) Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol 14:1486–1495.  https://doi.org/10.1166/jbn.2018.2596 CrossRefPubMedGoogle Scholar
  206. Wojcik M, Krawczyk M, Wojcik P, Cypryk K, Wozniak LA (2018) Molecular mechanisms underlying curcumin-mediated therapeutic effects in type 2 diabetes and cancer. Oxid Med Cell Longev 2018:9698258.  https://doi.org/10.1155/2018/9698258 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z (2019) Review of current strategies for delivering Alzheimer's disease drugs across the blood-brain barrier. Int J Mol Sci 20:E381.  https://doi.org/10.3390/ijms20020381 CrossRefPubMedGoogle Scholar
  208. World Health Organisation (2012) World health statistics. http://www.who.int/gho/publications/world_health_statistics/2012/en/.
  209. Wu YR, Choi HJ, Kang YG, Kim JK, Shin JW (2017) In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int J Nanomedicine 12:7007–7013.  https://doi.org/10.2147/IJN.S146296 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Xu H, Jia F, Singh PK, Ruan S, Zhang H, Li X (2016) Synergistic anti-glioma effect of a coloaded nano-drug delivery system. Int J Nanomedicine 12:29–40.  https://doi.org/10.2147/IJN.S116367 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Xue M, Yang MX, Zhang W, Li XM, Gao DH, Ou ZM, Li ZP, Liu SH, Li XJ, Yang SY (2013) Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomedicine 8:4677–4687.  https://doi.org/10.2147/IJN.S51262 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Xue M, Zhang L, Yang MX, Zhang W, Li XM, Ou ZM, Li ZP, Liu SH, Li XJ, Yang SY (2015) Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine 10:5049–5057.  https://doi.org/10.2147/IJN.S84565 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S (2018) Advances and challenges in geroscience research: An update. Physiol Int 105:298–308.  https://doi.org/10.1556/2060 CrossRefPubMedGoogle Scholar
  214. Yan J, Wang Y, Zhang X, Liu S, Tian C, Wang H (2016) Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv 23:1757–1762.  https://doi.org/10.3109/10717544.2015.1069423 CrossRefPubMedGoogle Scholar
  215. Yang X, Li Z, Wang N, Li L, Song L, He T, Sun L, Wang Z, Wu Q, Luo N, Yi C, Gong C (2015) Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci Rep 5:10322.  https://doi.org/10.1038/srep10322 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Yusuf M, Khan M, Khan RA, Ahmed B (2012) Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 21:300–311.  https://doi.org/10.3109/1061186X.2012.747529 CrossRefPubMedGoogle Scholar
  217. Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 18:3229–3241.  https://doi.org/10.1158/1078-0432.CCR-11-2938 CrossRefPubMedPubMedCentralGoogle Scholar
  218. Zeng L, Yan J, Luo L, Ma M, Zhu H (2017) Preparation and characterization of (-)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci Rep 7:45521CrossRefGoogle Scholar
  219. Zhang G, Zhang J (2018) Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: characterization and in vivo investigation on nephrotic syndrome rats. Drug Des Devel Ther 12:2509–2518.  https://doi.org/10.2147/DDDT.S172919 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Zhang Y, Yu J, Qiang L, Gu Z (2018) Nanomedicine for obesity treatment. Sci China Life Sci 61:373–379.  https://doi.org/10.1007/s11427-017-9257-1 CrossRefPubMedGoogle Scholar
  221. Zhang D, Zhang J, Zeng J, Li Z, Zuo H, Huang C, Zhao X (2019) Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J Biomed Nanotechnol 15:288–300.  https://doi.org/10.1166/jbn.2019.2682 CrossRefPubMedGoogle Scholar
  222. Zheng X, Zhang F, Shao D, Zhang Z, Cui L, Zhang J, Dawulieti J, Meng Z, Zhang M, Chen L (2018) Gram-scale production of carrier-free fluorescent berberine microrods for selective liver cancer therapy. Biofactors 44:496–502.  https://doi.org/10.1002/biof.1450 CrossRefPubMedGoogle Scholar
  223. Zhou Y, Du J, Wang L, Wang Y (2017) Nanocrystals technology for improving bioavailability of poorly soluble drugs: a mini–review. J Nanosci Nanotechnol 17:18–28.  https://doi.org/10.1166/jnn.2017.13108 CrossRefPubMedGoogle Scholar
  224. Zhu B, Yu L, Yue Q (2017) Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed Pharmacother 91:287–294.  https://doi.org/10.1016/j.biopha.2017.02.112 CrossRefPubMedGoogle Scholar
  225. Zhu F, Du B, Xu B (2018) Anti–inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit Rev Food Sci Nutr 58:1260–1270.  https://doi.org/10.1080/10408398.2016.1251390 CrossRefPubMedGoogle Scholar
  226. Zierer J, Menni C, Kastenmüller G, Spector TD (2015) Integration of 'omics' data in aging research: from biomarkers to systems biology. Aging Cell 14:933–944.  https://doi.org/10.1111/acel.12386 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and BiotechnologyVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  2. 2.Laboratory of EpigeneticsD.F. Chebotarev Institute of Gerontology, NAMSKyivUkraine
  3. 3.Department of BiologyCarleton UniversityOttawaCanada

Personalised recommendations