Advertisement

GeroScience

, Volume 41, Issue 5, pp 591–607 | Cite as

Accelerated decline in cognition in a mouse model of increased oxidative stress

  • Sreemathi Logan
  • Gordon H. Royce
  • Daniel Owen
  • Julie Farley
  • Michelle Ranjo-Bishop
  • William E. Sonntag
  • Sathyaseelan S. DeepaEmail author
Original Article

Abstract

Mice deficient in the antioxidant enzyme Cu/Zn-superoxide dismutase (Sod1KO mice) have a significant reduction in lifespan, exhibit many phenotypes of accelerated aging, and have high levels of oxidative stress in various tissues. Age-associated cognitive decline is a hallmark of aging and the increase in oxidative stress/damage with age is one of the mechanisms proposed for cognitive decline with age. Therefore, the goal of this study was to determine if Sod1KO mice exhibit an accelerated loss in cognitive function similar to that observed in aged animals. Cognition was assessed in Sod1KO and wild type (WT) mice using an automated home-cage testing apparatus (Noldus PhenoTyper) that included an initial discrimination and reversal task. Comparison of the total distance moved by the mice during light and dark phases of the study demonstrated that the Sod1KO mice do not show a deficit in movement. Assessment of cognitive function showed no significant difference between Sod1KO and WT mice during the initial discrimination phase of learning. However, during the reversal task, Sod1KO mice showed a significantly greater number of incorrect entries compared to WT mice indicating a decline in cognition similar to that observed in aged animals. Markers of oxidative stress (4-Hydroxynonenal, 4-HNE) and neuroinflammation [proinflammatory cytokines (IL6 and IL-1β) and neuroinflammatory markers (CD68, TLR4, and MCP1)] were significantly elevated in the hippocampus of male and female Sod1KO compared to WT mice. This study provides important evidence that increases in oxidative stress alone are sufficient to induce neuroinflammation and cognitive dysfunction that parallels the memory deficits seen in advanced aging and neurodegenerative diseases.

Keywords

Cu/Zn-superoxide dismutase Cognition Accelerating aging Oxidative stress Neuroinflammation 

Notes

Acknowledgements

This work was supported by NIH/NIA R01 AG059718, Oklahoma Center for the Advancement of Science and Technology research grant (HR18-053) and Presbyterian Health Foundation (OUHSC) Seed grant to Dr. Sathyaseelan S Deepa; National Institute on Aging K99 AG056662 to Dr. Sreemathi Logan; T32 AG052363 and R01 NS056218 to Dr. William Sonntag; R01 AG057424 to Drs. William Sonntag and Arlan Richardson. The research was also partially supported by grants awarded to Dr. Arlan Richardson from the National Institute on Aging (P01AG020591, R01AG045693).

References

  1. Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, Hodges EL, Ungvari Z, Csiszar A, Chen S, Georgescu C, Hubbard GB, Ikeno Y, Sonntag WE (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience 39:129–145.  https://doi.org/10.1007/s11357-017-9971-0 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bannerman DM, Deacon RM, Seeburg PH, Rawlins JN (2003) GluR-A-deficient mice display normal acquisition of a hippocampus-dependent spatial reference memory task but are impaired during spatial reversal. Behav Neurosci 117:866–870PubMedCrossRefGoogle Scholar
  3. Barnes CA (1988) Aging and the physiology of spatial memory. Neurobiol Aging 9:563–568PubMedCrossRefGoogle Scholar
  4. Barreto G, Huang TT, Giffard RG (2010) Age-related defects in sensorimotor activity, spatial learning, and memory in C57BL/6 mice. J Neurosurg Anesthesiol 22:214–219.  https://doi.org/10.1097/ANA.0b013e3181d56c98 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF (2002) Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res 134:291–298PubMedCrossRefGoogle Scholar
  6. Bettio LEB, Rajendran L, Gil-Mohapel J (2017) The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 79:66–86.  https://doi.org/10.1016/j.neubiorev.2017.04.030 CrossRefPubMedGoogle Scholar
  7. Bhaskaran S, Pharaoh G, Ranjit R, Murphy A, Matsuzaki S, Nair BC, Forbes B, Gispert S, Auburger G, Humphries KM, Kinter M, Griffin TM, Deepa SS (2018) Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin resistance. EMBO 19.  https://doi.org/10.15252/embr.201745009
  8. Bissonette GB, Powell EM (2012) Reversal learning and attentional set-shifting in mice. Neuropharmacology 62:1168–1174.  https://doi.org/10.1016/j.neuropharm.2011.03.011 CrossRefPubMedGoogle Scholar
  9. Breitzig M, Bhimineni C, Lockey R, Kolliputi N (2016) 4-Hydroxy-2-nonenal: a critical target in oxidative stress? Am J Physiol Cell Physiol 311:C537–C543.  https://doi.org/10.1152/ajpcell.00101.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Calabrese V, Stella AM, Butterfield DA, Scapagnini G (2004) Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance. Antioxid Redox Signal 6:895–913PubMedGoogle Scholar
  11. Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci U S A 88:3633–3636PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cini M, Moretti A (1995) Studies on lipid peroxidation and protein oxidation in the aging brain. Neurobiol Aging 16:53–57PubMedCrossRefGoogle Scholar
  13. Csipo T, Lipecz A, Fulop GA, Hand RA, Ngo BN, Dzialendzik M, Tarantini S, Balasubramanian P, Kiss T, Yabluchanska V, Silva-Palacios F, Courtney DL, Dasari TW, Sorond F, Sonntag WE, Csiszar A, Ungvari Z, Yabluchanskiy A (2019) Age-related decline in peripheral vascular health predicts cognitive impairment. Geroscience 41:125–136.  https://doi.org/10.1007/s11357-019-00063-5 CrossRefPubMedPubMedCentralGoogle Scholar
  14. d'Avila JC, Siqueira LD, Mazeraud A, Azevedo EP, Foguel D, Castro-Faria-Neto HC, Sharshar T, Chrétien F, Bozza FA (2018) Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation. J Neuroinflammation 15:28.  https://doi.org/10.1186/s12974-018-1059-y CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dalleau S, Baradat M, Guéraud F, Huc L (2013) Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20:1615–1630.  https://doi.org/10.1038/cdd.2013.138 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Davis HP, Small SA, Stern Y, Mayeux R, Feldstein SN, Keller FR (2003) Acquisition, recall, and forgetting of verbal information in long-term memory by young, middle-aged, and elderly individuals. Cortex 39:1063–1091PubMedCrossRefGoogle Scholar
  17. Deepa SS, Bhaskaran S, Espinoza S, Brooks SV, McArdle A, Jackson MJ, Van Remmen H, Richardson A (2017 Apr) A new mouse model of frailty: the cu/Zn superoxide dismutase knockout mouse. Geroscience. 39(2):187–198.  https://doi.org/10.1007/s11357-017-9975-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W, Li T, Wang YT (2013 Jan) Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology. 64:65–73.  https://doi.org/10.1016/j.neuropharm.2012.06.027 CrossRefPubMedGoogle Scholar
  19. Dröge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dudchenko PA (2004) An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev 28:699–709PubMedCrossRefGoogle Scholar
  21. El-Ghundi M, O'Dowd BF, Erclik M, George SR (2003) Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice. Eur J Neurosci 17:851–862PubMedCrossRefGoogle Scholar
  22. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380PubMedCrossRefGoogle Scholar
  23. Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, Guralnik JM, Longo DL (2005) The origins of age-related proinflammatory state. Blood 105:2294–2299PubMedCrossRefGoogle Scholar
  24. Floresco SB, Jentsch JD (2011) Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 36:227–2250.  https://doi.org/10.1038/npp.2010.158 CrossRefPubMedGoogle Scholar
  25. Floyd RA, Hensley K, Forster MJ, Kelleher-Anderson JA, Wood PL (2002) Nitrones as neuroprotectants and antiaging drugs. Ann N Y Acad Sci 959:321–329PubMedCrossRefGoogle Scholar
  26. Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A 93:4765–4769PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fredriksson A, Archer T (1996) Alpha-phenyl-tert-butyl-nitrone (PBN) reverses age-related maze learning performance and motor activity deficits in C57 BL/6 mice. Behav Pharmacol 7:245–253PubMedCrossRefGoogle Scholar
  28. Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S (2001) Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 928:168–175PubMedCrossRefGoogle Scholar
  29. Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284PubMedCrossRefGoogle Scholar
  30. Fulop GA, Kiss T, Tarantini S, Balasubramanian P, Yabluchanskiy A, Farkas E, Bari F, Ungvari Z, Csiszar A (2018) Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience 40:513–521.  https://doi.org/10.1007/s11357-018-0047-6 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gazova I, Laczó J, Rubinova E, Mokrisova I, Hyncicova E, Andel R, Vyhnalek M, Sheardova K, Coulson EJ, Hort J (2013) Spatial navigation in young versus older adults. Front Aging Neurosci 5:94.  https://doi.org/10.3389/fnagi.2013.00094 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Geinisman Y, Detoledo-Morrell L, Morrell F, Heller RE (1995) Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog Neurobiol 45:223–252PubMedCrossRefGoogle Scholar
  33. Gemma C, Vila J, Bachstetter A, Bickford PC (2007) Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR (ed) Brain aging: models, methods, and mechanisms. CRC Press/Taylor & Francis, Boca Raton (FL) Chapter 15Google Scholar
  34. Gibertini M, Newton C, Friedman H, Klein TW (1995) Spatial learning impairment in mice infected with legionella pneumophila or administered exogenous interleukin-1-beta. Brain Behav Immun 9:113–1128PubMedCrossRefGoogle Scholar
  35. Griffin WS (2006) Inflammation and neurodegenerative diseases. Am J Clin Nutr 83:470S–474SPubMedCrossRefGoogle Scholar
  36. Hager K, Machein U, Krieger S, Platt D, Seefried G, Bauer J (1994) Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neurobiol Aging 15:771–772PubMedCrossRefGoogle Scholar
  37. Hajjar I, Hayek SS, Goldstein FC, Martin G, Jones DP, Quyyumi A (2018) Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study. J Neuroinflammation 15:17.  https://doi.org/10.1186/s12974-017-1026-z CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A 98:10469–10474PubMedPubMedCentralCrossRefGoogle Scholar
  39. Han ES, Muller FL, Pérez VI, Qi W, Liang H, Xi L, Fu C, Doyle E, Hickey M, Cornell J, Epstein CJ, Roberts LJ, Van Remmen H, Richardson A (2008) The in vivo gene expression signature of oxidative stress. Physiol Genomics 34:112–126.  https://doi.org/10.1152/physiolgenomics.00239.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Harada CN, Natelson Love MC, Triebel KL (2013) Normal cognitive aging. Clin Geriatr Med 29:737–752.  https://doi.org/10.1016/j.cger.2013.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hein AM, Stasko MR, Matousek SB, Scott-McKean JJ, Maier SF, Olschowka JA, Costa AC, O'Banion MK (2010) Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun 24:243–253.  https://doi.org/10.1016/j.bbi.2009.10.002 CrossRefPubMedGoogle Scholar
  42. Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev 2016:7432797CrossRefGoogle Scholar
  43. Iguchi Y, Kosugi S, Nishikawa H, Lin Z, Minabe Y, Toda S (2014) Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions. PLoS One 9:e114024.  https://doi.org/10.1371/journal.pone.0114024 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Iuchi Y, Roy D, Okada F, Kibe N, Tsunoda S, Suzuki S, Takahashi M, Yokoyama H, Yoshitake J, Kondo S, Fujii J (2010) Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol Cell Biochem 341:181–194.  https://doi.org/10.1007/s11010-010-0449-y CrossRefPubMedGoogle Scholar
  45. Jang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H, Salmon AB, Brooks SV, Larkin L, Hayworth CR, Richardson A, Van Remmen H (2010) Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 24:1376–1390.  https://doi.org/10.1096/fj.09-146308 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Keithley EM, Canto C, Zheng QY, Wang X, Fischel-Ghodsian N, Johnson KR (2005) Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res 209:76–85PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kleinknecht KR, Bedenk BT, Kaltwasser SF, Grünecker B, Yen YC, Czisch M, Wotjak CT (2012) Hippocampus-dependent place learning enables spatial flexibility in C57BL6/N mice. Front Behav Neurosci 6:87.  https://doi.org/10.3389/fnbeh.2012.00087 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ko SU, Jerome GJ, Simonsick EM, Studenski S, Ferrucci L (2018) Differential gait patterns by history of falls and knee pain status in healthy older adults: results from the Baltimore longitudinal study of aging. J Aging Phys Act 26:577–582.  https://doi.org/10.1123/japa.2017-0225 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Larkin LM, Davis CS, Sims-Robinson C, Kostrominova TY, Van Remmen H, Richardson A, Feldman EL, Brooks SV (2011) Skeletal muscle weakness due to deficiency of CuZn-superoxide dismutase is associated with loss of functional innervation. Am J Physiol Regul Integr Comp Physiol 301:R1400–R1407.  https://doi.org/10.1152/ajpregu.00093.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liu J, Atamna H, Kuratsune H, Ames BN (2002) Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 959:133–166PubMedCrossRefGoogle Scholar
  51. Liu YZ, Chen JK, Li ZP, Zhao T, Ni M, Li DJ, Jiang CL, Shen FM (2014) High-salt diet enhances hippocampal oxidative stress and cognitive impairment in mice. Neurobiol Learn Mem 114:10–15.  https://doi.org/10.1016/j.nlm.2014.04.010 CrossRefPubMedGoogle Scholar
  52. Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, Yeganeh A, Parks EE, Premkumar P, Farley JA, Owen DB, Humphries KM, Kinter M, Freeman WM, Szweda LI, Van Remmen H, Sonntag WE (2018a) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol Metab 9:141–155.  https://doi.org/10.1016/j.molmet.2018.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Logan S, Owen D, Chen S, Chen WJ, Ungvari Z, Farley J, Csiszar A, Sharpe A, Loos M, Koopmans B, Richardson A, Sonntag WE (2018) Simultaneous assessment of cognitive function, circadian rhythm, and spontaneous activity in aging mice. Geroscience 40:123–137.  https://doi.org/10.1007/s11357-018-0019-x CrossRefPubMedPubMedCentralGoogle Scholar
  54. Loos M, Koopmans B, Aarts E, Maroteaux G, van der Sluis S, Neuro-BSIK Mouse Phenomics Consortium, Verhage M, Smit AB (2014) Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home-cage monitoring. PLoS One 9:e108563.  https://doi.org/10.1371/journal.pone.0108563 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lynch MA (1998) Analysis of the mechanisms underlying the age-related impairment in long-term potentiation in the rat. Rev Neurosci 9:169–201PubMedCrossRefGoogle Scholar
  56. Markowska AL, Mooney M, Sonntag WE (1998) Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87:559–569PubMedCrossRefGoogle Scholar
  57. Maroteaux G, Loos M, van der Sluis S, Koopmans B, Aarts E, van Gassen K, Geurts A, NeuroBSIK Mouse Phenomics Consortium, Largaespada DA, Spruijt BM, Stiedl O, Smit AB, Verhage M (2012) High-throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene. Genes Brain Behav 11:772–784.  https://doi.org/10.1111/j.1601-183X.2012.00820.x CrossRefPubMedPubMedCentralGoogle Scholar
  58. Matzel LD, Grossman H, Light K, Townsend D, Kolata S (2008) Age-related declines in general cognitive abilities of Balb/C mice are associated with disparities in working memory, body weight, and general activity. Learn Mem 15:733–746.  https://doi.org/10.1101/lm.954808 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mielke MM, Roberts RO, Savica R, Cha R, Drubach DI, Christianson T, Pankratz VS, Geda YE, Machulda MM, Ivnik RJ, Knopman DS, Boeve BF, Rocca WA, Petersen RC (2013) Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic study of aging. J Gerontol A Biol Sci Med Sci 68:929–937.  https://doi.org/10.1093/gerona/gls256 CrossRefPubMedGoogle Scholar
  60. Moore AH, Wu M, Shaftel SS, Graham KA, O'Banion MK (2009) Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience 164:1484–1495.  https://doi.org/10.1016/j.neuroscience.2009.08.073 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, White CL, Purpera MN, Uranga RM, Bruce-Keller AJ, Keller JN (2010) High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 114:1581–1589.  https://doi.org/10.1111/j.1471-4159.2010.06865.x CrossRefPubMedPubMedCentralGoogle Scholar
  62. Muller FL, Song W, Liu Y, Chaudhuri A, Pieke-Dahl S, Strong R, Huang TT, Epstein CJ, Roberts LJ 2nd, Csete M, Faulkner JA, Van Remmen H (2006) Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 40:1993–2004PubMedCrossRefGoogle Scholar
  63. Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T (2011) SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 286:44557–44568.  https://doi.org/10.1074/jbc.M111.279208 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Murman DL (2015) The impact of age on cognition. Semin Hear 36:111–121.  https://doi.org/10.1055/s-0035-1555115 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nicolle MM, Gonzalez J, Sugaya K, Baskerville KA, Bryan D, Lund K, Gallagher M, McKinney M (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107:415–431PubMedCrossRefGoogle Scholar
  66. Oitzl MS, van Oers H, Schöbitz B, de Kloet ER (1993) Interleukin-1 beta, but not interleukin-6, impairs spatial navigation learning. Brain Res 613:160–163PubMedCrossRefGoogle Scholar
  67. Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T (2009) Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients. Neurobiol Aging 30:198–209PubMedCrossRefGoogle Scholar
  68. Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: cu,Zn-SOD in mitochondria. J Biol Chem 276:38388–38393PubMedCrossRefGoogle Scholar
  69. Olofsson EM, Marklund SL, Behndig A (2007) Glucose-induced cataract in CuZn-SOD null lenses: an effect of nitric oxide? Free Radic Biol Med 42:1098–1105PubMedCrossRefGoogle Scholar
  70. Pedersen M, Bruunsgaard H, Weis N, Hendel HW, Andreassen BU, Eldrup E, Dela F, Pedersen BK (2003) Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech Ageing Dev 124:495–502PubMedCrossRefGoogle Scholar
  71. Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121:355–375PubMedCrossRefGoogle Scholar
  72. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD (1996) Motor neurons in cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47PubMedCrossRefGoogle Scholar
  73. Robitsek RJ, Fortin NJ, Koh MT, Gallagher M, Eichenbaum H (2008) Cognitive aging: a common decline of episodic recollection and spatial memory in rats. J Neurosci 28:8945–8954.  https://doi.org/10.1523/JNEUROSCI.1893-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rosso AL, Verghese J, Metti AL, Boudreau RM, Aizenstein HJ, Kritchevsky S, Harris T, Yaffe K, Satterfield S, Studenski S, Rosano C (2017) Slowing gait and risk for cognitive impairment: the hippocampus as a shared neural substrate. Neurology 89:336–342.  https://doi.org/10.1212/WNL.0000000000004153 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Roubenoff R, Harris TB, Abad LW, Wilson PW, Dallal GE, Dinarello CA (1998) Monocyte cytokine production in an elderly population: effect of age and inflammation. J Gerontol A Biol Sci Med Sci 53:M20–M26PubMedCrossRefGoogle Scholar
  76. Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655.  https://doi.org/10.1016/j.freeradbiomed.2009.12.015 CrossRefPubMedGoogle Scholar
  77. Salthouse TA (2010) Selective review of cognitive aging. J Int Neuropsychol Soc 16:754–760.  https://doi.org/10.1017/S1355617710000706 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC (2011) Cognitive dysfunction with aging and the role of inflammation. Ther Adv Chronic Dis 2:175–195.  https://doi.org/10.1177/2040622311399145 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Siqueira IR, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23:663–671PubMedCrossRefGoogle Scholar
  80. Snider TA, Richardson A, Stoner JA, Deepa SS (2018) The Geropathology grading platform demonstrates that mice null for cu/Zn-superoxide dismutase show accelerated biological aging. Geroscience 40:97–103.  https://doi.org/10.1007/s11357-018-0008-0 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H (1994) Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 76:215–224PubMedCrossRefGoogle Scholar
  82. Solleiro-Villavicencio H, Rivas-Arancibia S (2018) Effect of chronic oxidative stress on Neuroinflammatory response mediated by CD4(+)T cells in neurodegenerative diseases. Front Cell Neurosci 12:114.  https://doi.org/10.3389/fncel.2018.00114 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Stebbings KA, Choi HW, Ravindra A, Llano DA (2016) The impact of aging, hearing loss, and body weight on mouse hippocampal redox state, measured in brain slices using fluorescence imaging. Neurobiol Aging 42:101–109.  https://doi.org/10.1016/j.neurobiolaging.2016.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Suire CN, Eitan E, Shaffer NC, Tian Q, Studenski S, Mattson MP, Kapogiannis D (2017) Walking speed decline in older adults is associated with elevated pro-BDNF in plasma extracellular vesicles. Exp Gerontol 98:209–216.  https://doi.org/10.1016/j.exger.2017.08.024 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Taipa R, Ferreira V, Brochado P, Robinson A, Reis I, Marques F, Mann DM, Melo-Pires M, Sousa N (2018) Inflammatory pathology markers (activated microglia and reactive astrocytes) in early and late onset Alzheimer disease: a post mortem study. Neuropathol Appl Neurobiol 44:298–313.  https://doi.org/10.1111/nan.12445 CrossRefPubMedGoogle Scholar
  86. Tait DS, Brown VJ (2007) Difficulty overcoming learned non-reward during reversal learning in rats with ibotenic acid lesions of orbital prefrontal cortex. Ann N Y Acad Sci 1121:407–420PubMedCrossRefGoogle Scholar
  87. Tarantini S, Valcarcel-Ares MN, Yabluchanskiy A, Tucsek Z, Hertelendy P, Kiss T, Gautam T, Zhang XA, Sonntag WE, de Cabo R, Farkas E, Elliott MH, Kinter MT, Deak F, Ungvari Z, Csiszar A (2018a) Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood-brain barrier disruption, Neuroinflammation, Amyloidogenic gene expression, and cognitive decline in mice, mimicking the aging phenotype. J Gerontol A Biol Sci Med Sci 73:853–863.  https://doi.org/10.1093/gerona/glx177 CrossRefPubMedGoogle Scholar
  88. Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Fulop GA, Hertelendy P, Gautam T, Farkas E, Perz A, Rabinovitch PS, Sonntag WE, Csiszar A, Ungvari Z (2018b) Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17:e12731.  https://doi.org/10.1111/acel.12731 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, Hertelendy P, Kinter M, Ballabh P, Süle Z, Farkas E, Baur JA, Sinclair DA, Csiszar A, Ungvari Z (2019) Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol 24:101192.  https://doi.org/10.1016/j.redox.2019.101192 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tha KK, Okuma Y, Miyazaki H, Murayama T, Uehara T, Hatakeyama R, Hayashi Y, Nomura Y (2000) Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res 885:25–31PubMedCrossRefGoogle Scholar
  91. Toth P, Tarantini S, Csiszar A, Ungvari Z (2017) Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 312:H1–H20.  https://doi.org/10.1152/ajpheart.00581.2016 CrossRefPubMedGoogle Scholar
  92. Uchida K, Szweda LI, Chae HZ, Stadtman ER (1993) Immunochemical detection of 4-hydroxynonenal protein adducts in oxidized hepatocytes. Proc Natl Acad Sci U S A 90:8742–8746PubMedPubMedCentralCrossRefGoogle Scholar
  93. Uchida K, Itakura K, Kawakishi S, Hiai H, Toyokuni S, Stadtman ER (1995) characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch Biochem Biophys 324(2):241–248PubMedCrossRefGoogle Scholar
  94. Valcarcel-Ares MN, Tucsek Z, Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Galvan V, Ballabh P, Richardson A, Freeman WM, Wren JD, Deak F, Ungvari Z, Csiszar A (2019) Obesity in aging exacerbates Neuroinflammation, dysregulating synaptic function-related genes and altering eicosanoid synthesis in the mouse Hippocampus: potential role in impaired synaptic plasticity and cognitive decline. J Gerontol A Biol Sci Med Sci 74:290–298.  https://doi.org/10.1093/gerona/gly127 CrossRefPubMedGoogle Scholar
  95. VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM (2011) Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 43:201–212.  https://doi.org/10.1016/j.nbd.2011.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  96. VanGuilder Starkey HD, Bixler GV, Sonntag WE, Freeman WM (2013) Expression of NgR1-antagonizing proteins decreases with aging and cognitive decline in rat hippocampus. Cell Mol Neurobiol 33:483–488.  https://doi.org/10.1007/s10571-013-9929-4 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Vilà-Balló A, Mas-Herrero E, Ripollés P, Simó M, Miró J, Cucurell D, López-Barroso D, Juncadella M, Marco-Pallarés J, Falip M, Rodríguez-Fornells A (2017) Unraveling the role of the Hippocampus in reversal learning. J Neurosci 37:6686–6697.  https://doi.org/10.1523/JNEUROSCI.3212-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Watson NL, Rosano C, Boudreau RM, Simonsick EM, Ferrucci L, Sutton-Tyrrell K, Hardy SE, Atkinson HH, Yaffe K, Satterfield S, Harris TB, Newman AB, Health ABC Study (2010) Executive function, memory, and gait speed decline in well-functioning older adults. J Gerontol A Biol Sci Med Sci 65:1093–1100.  https://doi.org/10.1093/gerona/glq111 CrossRefPubMedGoogle Scholar
  99. Yang G, Meng Y, Li W, Yong Y, Fan Z, Ding H, Wei Y, Luo J, Ke ZJ (2011) Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 21:279–297.  https://doi.org/10.1111/j.1750-3639.2010.00445.x CrossRefPubMedGoogle Scholar
  100. Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, Ling EA (2013) Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation 10:23.  https://doi.org/10.1186/1742-2094-10-23 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang Y, Ikeno Y, Bokov A, Gelfond J, Jaramillo C, Zhang HM, Liu Y, Qi W, Hubbard G, Richardson A, Van Remmen H (2013) Dietary restriction attenuates the accelerated aging phenotype of Sod1(−/−) mice. Free Radic Biol Med 60:300–306.  https://doi.org/10.1016/j.freeradbiomed.2013.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhang Y, Liu Y, Walsh M, Bokov A, Ikeno Y, Jang YC, Perez VI, Van Remmen H, Richardson A (2016) Liver specific expression of cu/ZnSOD extends the lifespan of Sod1 null mice. Mech Ageing Dev 154:1–8.  https://doi.org/10.1016/j.mad.2016.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zhong JY, Magnusson KR, Swarts ME, Clendinen CA, Reynolds NC, Moffat SD (2017) The application of a rodent-based Morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning. Behav Neurosci 131:470–482.  https://doi.org/10.1037/bne0000219 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2019

Authors and Affiliations

  1. 1.Department of Rehabilitation Sciences, College of Allied HealthUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  3. 3.Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations