, Volume 40, Issue 1, pp 11–29 | Cite as

Analysis of DNA modifications in aging research

  • Dustin R. Masser
  • Niran Hadad
  • Hunter Porter
  • Michael B. Stout
  • Archana Unnikrishnan
  • David R. Stanford
  • Willard M. Freeman
Review Article


As geroscience research extends into the role of epigenetics in aging and age-related disease, researchers are being confronted with unfamiliar molecular techniques and data analysis methods that can be difficult to integrate into their work. In this review, we focus on the analysis of DNA modifications, namely cytosine methylation and hydroxymethylation, through next-generation sequencing methods. While older techniques for modification analysis performed relative quantitation across regions of the genome or examined average genome levels, these analyses lack the desired specificity, rigor, and genomic coverage to firmly establish the nature of genomic methylation patterns and their response to aging. With recent methodological advances, such as whole genome bisulfite sequencing (WGBS), bisulfite oligonucleotide capture sequencing (BOCS), and bisulfite amplicon sequencing (BSAS), cytosine modifications can now be readily analyzed with base-specific, absolute quantitation at both cytosine-guanine dinucleotide (CG) and non-CG sites throughout the genome or within specific regions of interest by next-generation sequencing. Additional advances, such as oxidative bisulfite conversion to differentiate methylation from hydroxymethylation and analysis of limited input/single-cells, have great promise for continuing to expand epigenomic capabilities. This review provides a background on DNA modifications, the current state-of-the-art for sequencing methods, bioinformatics tools for converting these large data sets into biological insights, and perspectives on future directions for the field.


Epigenetics Methods DNA methylation 



The authors thank Donald Dunn for assistance with figure generation.


  1. Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akalin A et al (2012a) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akalin A et al (2012b) Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 8:e1002781PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500PubMedCrossRefGoogle Scholar
  5. Allum F et al (2015) Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun 6:7211PubMedPubMedCentralCrossRefGoogle Scholar
  6. Almeida RD et al (2012) Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics 7:137–140PubMedPubMedCentralCrossRefGoogle Scholar
  7. Angermueller C et al (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13:229–232PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baubec T, Akalin A (2016) Genome-wide analysis of DNA methylation patterns by high-throughput sequencing. In: Aransay AM, Lavín Trueba JL (eds) Field guidelines for genetic experimental designs in high-throughput sequencing. Springer International Publishing, Cham, pp 197–221CrossRefGoogle Scholar
  9. Benayoun BA et al (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16:593–610PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bernstein DL et al (2015) The BisPCR(2) method for targeted bisulfite sequencing. Epigenetics Chromatin 8:27PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bestor TH et al (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A 112:6796–6799PubMedCrossRefGoogle Scholar
  12. Bhat S et al (2016) DNA methylation detection at single base resolution using targeted next generation bisulfite sequencing and cross validation using capillary sequencing. Gene 594:259–267PubMedCrossRefGoogle Scholar
  13. Bibikova M et al (2009) Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 1:177–200PubMedCrossRefGoogle Scholar
  14. Bibikova M et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295PubMedCrossRefGoogle Scholar
  15. Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedCrossRefGoogle Scholar
  17. Blueprint_consortium (2016) Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol 34:726–737CrossRefGoogle Scholar
  18. Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13:705–719PubMedCrossRefGoogle Scholar
  19. Booth MJ et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937PubMedCrossRefGoogle Scholar
  20. Booth MJ et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851PubMedPubMedCentralCrossRefGoogle Scholar
  21. Booth MJ et al (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6:435–440PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burgess DJ (2017) Epigenetics: rich pore methods for DNA methylation detection. Nat Rev Genet 18:209PubMedCrossRefGoogle Scholar
  23. Cedar H et al (1979) Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res 6:2125–2132PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chapman CG et al (2015) TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer. Sci Rep 5:17568PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen PY et al (2010) BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen BH et al (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8:1844–1865CrossRefGoogle Scholar
  27. Chen GG et al (2017) Medium throughput bisulfite sequencing for accurate detection of 5-methylcytosine and 5-hydroxymethylcytosine. BMC Genomics 18:96PubMedPubMedCentralCrossRefGoogle Scholar
  28. Christensen BC et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602PubMedPubMedCentralCrossRefGoogle Scholar
  29. Clark SJ et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997PubMedPubMedCentralCrossRefGoogle Scholar
  30. Clark SJ et al (2016) Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 17:72PubMedPubMedCentralCrossRefGoogle Scholar
  31. Clark SJ et al (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12:534–547PubMedCrossRefGoogle Scholar
  32. Cokus SJ et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cole JJ et al (2017) Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 18:58PubMedPubMedCentralCrossRefGoogle Scholar
  34. Crary-Dooley FK et al (2017) A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12:206–214PubMedPubMedCentralCrossRefGoogle Scholar
  35. de Koning AP et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dozmorov MG (2017) Epigenomic annotation-based interpretation of genomic data: from enrichment analysis to machine learning. Bioinformatics 33:3323–3330PubMedCrossRefGoogle Scholar
  37. Dupont JM et al (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127PubMedCrossRefGoogle Scholar
  38. Edgar R et al (2014) Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin 7:28PubMedPubMedCentralCrossRefGoogle Scholar
  39. Franzen J et al (2017) Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell 16:183–191PubMedCrossRefGoogle Scholar
  40. Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fuke C et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204PubMedCrossRefGoogle Scholar
  42. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852PubMedPubMedCentralCrossRefGoogle Scholar
  43. Garrett-Bakelman FE et al. (2015) Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution. J Vis Exp:e52246Google Scholar
  44. Globisch D et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gravina S et al (2015) Single-cell, locus-specific bisulfite sequencing (SLBS) for direct detection of epimutations in DNA methylation patterns. Nucleic Acids Res 43:e93PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gravina S et al (2016) Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol 17:150PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gu H et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481PubMedCrossRefGoogle Scholar
  48. Hadad N et al (2016) Absence of genomic hypomethylation or regulation of cytosine-modifying enzymes with aging in male and female mice. Epigenetics Chromatin 9:30PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hadad N et al (2017a) Caloric-restriction attenuates age-associated alterations in CG and non-CG methylation in the old brain. BioRxv.
  50. Hadad N et al. (2017b) Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. bioRxivGoogle Scholar
  51. Hadad N et al (2017c) Caloric-restriction attenuates age-associated alterations in CG and non-CG methylation in the old brain. BioRxv:
  52. Hahn O et al (2017) Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol 18:56PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hannum G et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367PubMedCrossRefGoogle Scholar
  54. Hansen KD et al (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13:R83PubMedPubMedCentralCrossRefGoogle Scholar
  55. Harris RA et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105PubMedPubMedCentralCrossRefGoogle Scholar
  56. He Y, Ecker JR (2015) Non-CG methylation in the human genome. Annu Rev Genomics Hum Genet 16:55–77PubMedPubMedCentralCrossRefGoogle Scholar
  57. He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hing B et al (2015) Adaptation of the targeted capture methyl-Seq platform for the mouse genome identifies novel tissue-specific DNA methylation patterns of genes involved in neurodevelopment. Epigenetics 10:581–596PubMedPubMedCentralCrossRefGoogle Scholar
  59. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80PubMedCrossRefGoogle Scholar
  60. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332PubMedGoogle Scholar
  62. Houseman EA et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hu L et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555PubMedCrossRefGoogle Scholar
  64. Ito S et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ivanov M et al (2013) In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes. Nucleic Acids Res 41:e72PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jain M et al. (2017) Nanopore sequencing and assembly of a human genome with ultra-long reads. bioRxivGoogle Scholar
  67. Jeck WR et al (2012) Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11:727–731PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jones MJ et al. (2015) DNA methylation and healthy human aging. Aging CellGoogle Scholar
  69. Jorgensen HF et al (2006) Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res 34:e96PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kalani A et al (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 52:202–215PubMedPubMedCentralCrossRefGoogle Scholar
  71. Karlin S, Mrázek J (1997) Compositional differences within and between eukaryotic genomes. Proc Natl Acad Sci 94:10227–10232PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kaushal A et al (2017) Comparison of different cell type correction methods for genome-scale epigenetics studies. BMC Bioinformatics 18:216PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713PubMedPubMedCentralCrossRefGoogle Scholar
  74. Khanna A et al (2013) EpiGnome[trade] methyl-Seq kit: a novel post-bisulfite conversion library prep method for methylation analysis. Nat Methods 10Google Scholar
  75. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334PubMedCrossRefGoogle Scholar
  76. Kim S et al (2017) The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39:83–92PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kinde B et al (2015) Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MeCP2. Proc Natl Acad Sci U S A 112:6800–6806PubMedPubMedCentralCrossRefGoogle Scholar
  78. King GD et al (2012) Promoter methylation and age-related downregulation of Klotho in rhesus monkey. Age (Dordr) 34:1405–1419CrossRefGoogle Scholar
  79. Kishore K et al (2015) methylPipe and compEpiTools: a suite of R packages for the integrative analysis of epigenomics data. BMC Bioinformatics 16:313PubMedPubMedCentralCrossRefGoogle Scholar
  80. Klus P et al (2012) BarraCUDA—a fast short read sequence aligner using graphics processing units. BMC Res Notes 5:27PubMedPubMedCentralCrossRefGoogle Scholar
  81. Komori HK et al (2011) Application of microdroplet PCR for large-scale targeted bisulfite sequencing. Genome Res 21:1738–1745PubMedPubMedCentralCrossRefGoogle Scholar
  82. Koster J, Rahmann S (2014) Massively parallel read mapping on GPUs with the q-group index and PEANUT. PeerJ 2:e606PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kozlenkov A et al (2017) DNA methylation profiling of human prefrontal cortex neurons in heroin users shows significant difference between genomic contexts of hyper- and hypomethylation and a younger epigenetic age. Genes (Basel) 8Google Scholar
  84. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930PubMedPubMedCentralCrossRefGoogle Scholar
  85. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27:1571–1572PubMedPubMedCentralCrossRefGoogle Scholar
  86. Krueger F et al (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151PubMedCrossRefGoogle Scholar
  87. Kungulovski G et al (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  88. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203PubMedCrossRefGoogle Scholar
  89. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  90. Li Q et al (2015) Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 43:e81PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19:959–966PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lister R, Mukamel EA (2015) Turning over DNA methylation in the mind. Front Neurosci 9:252PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lister R et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lister R et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905PubMedPubMedCentralCrossRefGoogle Scholar
  96. Logue MW et al. (2017) The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. EpigenomicsGoogle Scholar
  97. Lopez-Leon M, Goya RG (2017) The emerging view of aging as a reversible epigenetic process. Gerontology 63:426–431PubMedCrossRefGoogle Scholar
  98. Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lou S et al (2014) Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol 15:408PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lu X et al (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317PubMedPubMedCentralCrossRefGoogle Scholar
  101. Luo C et al (2017) Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357:600–604PubMedPubMedCentralCrossRefGoogle Scholar
  102. Maeder ML et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142PubMedPubMedCentralCrossRefGoogle Scholar
  103. Maegawa S et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340PubMedPubMedCentralCrossRefGoogle Scholar
  104. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mamanova L et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118PubMedCrossRefGoogle Scholar
  106. Manconi A et al (2014) GPU-BSM: a GPU-based tool to map bisulfite-treated reads. PLoS One 9:e97277PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mangold CA et al (2017a) CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J Gerontol A Biol Sci Med Sci 72:16–29PubMedCrossRefGoogle Scholar
  108. Mangold CA et al (2017b) Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging. J Neuroinflammation 14:141PubMedPubMedCentralCrossRefGoogle Scholar
  109. Marioni RE et al (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25PubMedPubMedCentralCrossRefGoogle Scholar
  110. Marioni RE et al. (2016) The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int J EpidemiolGoogle Scholar
  111. Martinowich K et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893PubMedCrossRefGoogle Scholar
  112. Masser DR et al (2013) Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6:33PubMedPubMedCentralCrossRefGoogle Scholar
  113. Masser DR et al. (2015) Targeted DNA methylation analysis by next-generation sequencing. J Vis ExpGoogle Scholar
  114. Masser DR et al (2016) Bisulfite oligonucleotide-capture sequencing for targeted base- and strand-specific absolute 5-methylcytosine quantitation. Age (Dordr) 38:49CrossRefGoogle Scholar
  115. Masser DR et al. (2017a) Sexually divergent DNA methylation patterns with hippocampal aging. Aging CellGoogle Scholar
  116. Masser DR et al. (2017b) Sexually divergent DNA methylation programs with hippocampal aging. bioRxiv 161752Google Scholar
  117. Masser DR et al. (2017c) Sexually divergent DNA methylation patterns with hippocampal aging. Aging Cell:Preprint from BioRxv. doi:
  118. Mei Y et al (2015) Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 14:659–668PubMedPubMedCentralCrossRefGoogle Scholar
  119. Meissner A et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877PubMedPubMedCentralCrossRefGoogle Scholar
  120. Miura F et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40:e136PubMedPubMedCentralCrossRefGoogle Scholar
  121. Mo A et al (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86:1369–1384PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mo A et al (2016) Epigenomic landscapes of retinal rods and cones. elife 5:e11613PubMedPubMedCentralCrossRefGoogle Scholar
  123. Moore LD et al (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38PubMedCrossRefGoogle Scholar
  124. Moran S et al (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8:389–399PubMedCrossRefGoogle Scholar
  125. Mulqueen RM et al. (2017) Scalable and efficient single-cell DNA methylation sequencing by combinatorial indexing. bioRxivGoogle Scholar
  126. Neri F et al (2016) Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc 11:1191–1205PubMedCrossRefGoogle Scholar
  127. Nestor CE et al (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477PubMedPubMedCentralCrossRefGoogle Scholar
  128. Noer A et al (2007) Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 8:18PubMedPubMedCentralCrossRefGoogle Scholar
  129. Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  130. Olova N et al. (2017) Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. bioRxivGoogle Scholar
  131. Pacheco SE et al (2011) Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One 6:e20280PubMedPubMedCentralCrossRefGoogle Scholar
  132. Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32:1446–1453PubMedCrossRefGoogle Scholar
  133. Parrish RR et al. (2012) Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues. Curr Protoc Neurosci Chapter 7:Unit 7 24Google Scholar
  134. Petkovich DA et al (2017) Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab 25:954–960 e956PubMedCrossRefGoogle Scholar
  135. Raiber E-A et al (2017) Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1:0069CrossRefGoogle Scholar
  136. Rakyan VK et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rand AC et al (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14:411–413PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rauch T, Pfeifer GP (2005) Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Investig 85:1172–1180PubMedCrossRefGoogle Scholar
  139. Reddy PM, Reddy PR (1990) Effect of prolactin on DNA methylation in the liver and kidney of rat. Mol Cell Biochem 95:43–47PubMedCrossRefGoogle Scholar
  140. Reed K et al (2010) Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 397:96–106PubMedCrossRefGoogle Scholar
  141. Reilly JG et al (1982) DNA methylation in mouse cells in culture as measured by restriction enzymes. Biochim Biophys Acta 697:53–59PubMedCrossRefGoogle Scholar
  142. Schatz MC (2017) Nanopore sequencing meets epigenetics. Nat Methods 14:347–348PubMedCrossRefGoogle Scholar
  143. Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326PubMedCrossRefGoogle Scholar
  144. Schultz MD et al (2015) Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523:212–216PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sen P et al (2016) Epigenetic mechanisms of longevity and aging. Cell 166:822–839PubMedPubMedCentralCrossRefGoogle Scholar
  146. Serre D et al (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38:391–399PubMedCrossRefGoogle Scholar
  147. Shafi A et al. (2017) A survey of the approaches for identifying differential methylation using bisulfite sequencing data. Brief BioinformGoogle Scholar
  148. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145PubMedCrossRefGoogle Scholar
  149. Shendure J et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353PubMedCrossRefGoogle Scholar
  150. Shi DQ et al (2017) New insights into 5hmC DNA modification: generation, distribution and function. Front Genet 8:100PubMedPubMedCentralCrossRefGoogle Scholar
  151. Simpkin AJ et al (2017) Are objective measures of physical capability related to accelerated epigenetic age? Findings from a British birth cohort. BMJ Open 7:e016708PubMedPubMedCentralCrossRefGoogle Scholar
  152. Simpson JT et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410PubMedCrossRefGoogle Scholar
  153. Song L et al (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:504–510PubMedCrossRefGoogle Scholar
  154. Spruijt CG et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159PubMedCrossRefGoogle Scholar
  155. Stricker SH et al (2017) From profiles to function in epigenomics. Nat Rev Genet 18:51–66PubMedCrossRefGoogle Scholar
  156. Stubbs TM et al (2017) Multi-tissue DNA methylation age predictor in mouse. Genome Biol 18:68PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sun Z et al (2015) Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis. Epigenomics 7:813–828PubMedPubMedCentralCrossRefGoogle Scholar
  158. Szulwach KE et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14:1607–1616PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tan L et al (2013) Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method. Nucleic Acids Res 41:e84PubMedPubMedCentralCrossRefGoogle Scholar
  160. Teschendorff AE, Relton CL (2017) Statistical and integrative system-level analysis of DNA methylation data. Nat Rev GenetGoogle Scholar
  161. Thakore PI et al (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127–137PubMedPubMedCentralCrossRefGoogle Scholar
  162. Tippmann S (2015) Programming tools: adventures with R. Nature 517:109–110PubMedCrossRefGoogle Scholar
  163. Unnikrishnan A et al. (2017a) Revisiting the genomic hypomethylation hypothesis of aging. Annals of the New York Acedemy of Science In pressGoogle Scholar
  164. Unnikrishnan A et al (2017b) Role of DNA methylation in the dietary restriction mediated cellular memory. Geroscience 39:331–345PubMedPubMedCentralCrossRefGoogle Scholar
  165. Valdes AM et al (2013) Omics technologies and the study of human ageing. Nat Rev Genet 14:601–607PubMedCrossRefGoogle Scholar
  166. Vanyushin BF et al (1973) The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia 19:138–152PubMedCrossRefGoogle Scholar
  167. Varley KE, Mitra RD (2010) Bisulfite patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res 20:1279–1287PubMedPubMedCentralCrossRefGoogle Scholar
  168. Voigt P, Reinberg D (2013) Epigenome editing. Nat Biotechnol 31:1097–1099PubMedCrossRefGoogle Scholar
  169. Vojta A et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628PubMedPubMedCentralCrossRefGoogle Scholar
  170. Waddington CH (1940) Organisers & genes. The University Press, CambridgeGoogle Scholar
  171. Wang J et al (2011) High resolution profiling of human exon methylation by liquid hybridization capture-based bisulfite sequencing. BMC Genomics 12:597PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wang T et al (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 18:57PubMedPubMedCentralCrossRefGoogle Scholar
  173. Weber M et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862PubMedCrossRefGoogle Scholar
  174. Weidner CI et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24PubMedPubMedCentralCrossRefGoogle Scholar
  175. Willyard C (2017) The epigenome editors: how tools such as CRISPR offer new details about epigenetics. Nat Med 23:900–903PubMedCrossRefGoogle Scholar
  176. Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057PubMedCrossRefGoogle Scholar
  177. Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232PubMedPubMedCentralCrossRefGoogle Scholar
  178. Xu Y et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yang AS et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38PubMedPubMedCentralCrossRefGoogle Scholar
  180. Yao B et al (2017) DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun 8:1122PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yu M et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380PubMedPubMedCentralCrossRefGoogle Scholar
  182. Yu B et al. (2017) Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation. Stem Cell RepGoogle Scholar
  183. Zampieri M et al (2015) Reconfiguration of DNA methylation in aging. Mech Ageing Dev 151:60–70PubMedCrossRefGoogle Scholar
  184. Zhang Y et al (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol Biol 507:177–187PubMedCrossRefGoogle Scholar
  185. Zhao L et al (2014) The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res 24:1296–1307PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zheng SC et al (2017) Correcting for cell-type heterogeneity in epigenome-wide association studies: revisiting previous analyses. Nat Methods 14:216–217PubMedCrossRefGoogle Scholar
  187. Ziller MJ et al (2015) Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods 12:230–232 231 p following 232PubMedCrossRefGoogle Scholar
  188. Ziller MJ et al (2016) Targeted bisulfite sequencing of the dynamic DNA methylome. Epigenetics Chromatin 9:55PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zou J et al (2014) Epigenome-wide association studies without the need for cell-type composition. Nat Methods 11:309–311PubMedCrossRefGoogle Scholar
  190. Zykovich A et al (2014) Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell 13:360–366PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2018

Authors and Affiliations

  1. 1.Reynolds Oklahoma Center on AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  3. 3.Oklahoma Nathan Shock Center for AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  4. 4.Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  5. 5.Department of Nutritional SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  6. 6.Department of Geriatric MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations