, Volume 39, Issue 4, pp 457–463 | Cite as

Rapamycin treatment attenuates age-associated periodontitis in mice

  • Jonathan Y. An
  • Ellen K. Quarles
  • Surapat Mekvanich
  • Alex Kang
  • Anthony Liu
  • Danielle Santos
  • Richard A. Miller
  • Peter S. Rabinovitch
  • Timothy C. Cox
  • Matt KaeberleinEmail author
Original Article


Interventions that target biological mechanisms of aging have great potential to enhance quality of life by delaying morbidity and mortality. The FDA-approved drug rapamycin is a compelling candidate for such an intervention. In a previous study, it was reported that 3 months of rapamycin treatment is sufficient to increase life expectancy and remodel the gut microbiome in aged mice. Transient treatment with rapamycin or a rapamycin derivative has also been shown to delay immune stem cell senescence and rejuvenate immune function in aged mice and elderly people. Periodontal disease is an important age-related disease involving altered immune function, pathological changes to the oral microbiome, and systemic inflammation. Periodontal disease is defined clinically by loss of alveolar bone and by connective tissue degeneration. Here, we describe significant alveolar bone loss during aging in two different mouse strain backgrounds and report that rapamycin treatment is sufficient to reverse age-associated periodontal disease in mice. Partial restoration of youthful levels of alveolar bone is observed in 22-month-old rapamycin-treated mice as rapidly as 8 weeks after initiation of treatment. To the best of our knowledge, this represents the first intervention shown to substantially prevent or reverse age-associated alveolar bone loss. These findings suggest the possibility that inhibition of mTOR with rapamycin or other pharmacological agents may be useful to treat a clinically relevant condition for which there is currently no effective treatment.


mTOR Rapamycin Aging Healthspan Oral health Gum disease Teeth Dental health Microbiome Inflammation Immune function Mice 



JA was supported by NIH training grants T90DE021984 and ARCS Foundation. EQ was supported by NIH training grants T32AG000057. This work was supported by grants from the Glenn Foundation to MK and RAM and by NIH grant AG022303 to RAM.

Supplementary material

11357_2017_9994_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1.64 MB)


  1. Agarwal A (2013) Osteogenic action of anti-diabetic drug metformin in periodontal disease. J Pharm Bioallied Sci 5:327CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anisimov VN et al (2011) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10:4230–4236CrossRefPubMedGoogle Scholar
  3. Baker PJ, Dixon M, Roopenian DC (2000) Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect Immun 68:5864–5868CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bitto A et al (2016) Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. elife 5:e16351CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen C, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:ra75PubMedPubMedCentralGoogle Scholar
  6. Dai DF et al (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13:529–539CrossRefPubMedPubMedCentralGoogle Scholar
  7. Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol 8:481–490CrossRefPubMedGoogle Scholar
  8. De Martinis M, Franceschi C, Monti D, Ginaldi L (2005) Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 579:2035–2039CrossRefPubMedGoogle Scholar
  9. Eke PI et al (2012) Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 91:914–920CrossRefPubMedGoogle Scholar
  10. Eke PI et al (2015) Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol 86:611–622CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fischer KE et al (2015) Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life. PLoS One 10:e0126644CrossRefPubMedPubMedCentralGoogle Scholar
  12. Flynn JM et al (2013) Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12:851–862CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gil-Montoya JA, de Mello AL, Barrios R, Gonzalez-Moles MA, Bravo M (2015) Oral health in the elderly patient and its impact on general well-being: a nonsystematic review. Clin Interv Aging 10:461–467CrossRefPubMedPubMedCentralGoogle Scholar
  14. Goldman DP et al (2013) Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff 32:1698–1705CrossRefGoogle Scholar
  15. Halloran J et al (2012) Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223:102–113CrossRefPubMedPubMedCentralGoogle Scholar
  16. Harrison DE et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395PubMedPubMedCentralGoogle Scholar
  17. Harrison DE et al (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13:273–282CrossRefPubMedGoogle Scholar
  18. Hurez V et al (2015) Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell 14:945–956CrossRefPubMedPubMedCentralGoogle Scholar
  19. Johnson SC, Martin GM, Rabinovitch PS, Kaeberlein M (2013a) Preserving youth: does rapamycin deliver? Sci Transl Med 5:211fs240CrossRefGoogle Scholar
  20. Johnson SC, Rabinovitch PS, Kaeberlein M (2013b) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345CrossRefPubMedPubMedCentralGoogle Scholar
  21. Johnson SC, Sangesland M, Kaeberlein M, Rabinovitch PS (2015) Modulating mTOR in aging and health. Interdiscip Top Gerontol 40:107–127CrossRefPubMedGoogle Scholar
  22. Kaeberlein M (2013a) Longevity and aging. F1000Prime Rep 5:5CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kaeberlein M (2013b) mTOR inhibition: from aging to autism and beyond. Scientifica (Cairo) 2013:849186Google Scholar
  24. Kaeberlein M, Rabinovitch PS, Martin GM (2015) Healthy aging: the ultimate preventative medicine. Science 350:1191–1193CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim J, Amar S (2006) Periodontal disease and systemic conditions: a bidirectional relationship. Odontology 94:10–21CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kirkland JL, Tchkonia T (2015) Clinical strategies and animal models for developing senolytic agents. Exp Gerontol 68:19–25CrossRefPubMedGoogle Scholar
  27. Laberge RM et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17:1049–1061CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liang S, Hosur KB, Domon H, Hajishengallis G (2010) Periodontal inflammation and bone loss in aged mice. J Periodontal Res 45:574–578PubMedPubMedCentralGoogle Scholar
  29. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217CrossRefPubMedPubMedCentralGoogle Scholar
  30. Majumder S et al (2012) Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging Cell 11:326–335CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mannick JB et al (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6:268ra179CrossRefPubMedGoogle Scholar
  32. M. P. Mattson, V. D. Longo, M. Harvie (2016) Impact of intermittent fasting on health and disease processes. Ageing Res RevGoogle Scholar
  33. Miller RA et al (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66:191–201CrossRefPubMedGoogle Scholar
  34. Miller RA et al (2014) Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13:468–477CrossRefPubMedPubMedCentralGoogle Scholar
  35. Neff F et al (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123:3272–3291CrossRefPubMedPubMedCentralGoogle Scholar
  36. Preshaw PM, Henne K, Taylor JJ, Valentine RA, Conrads G (2017) Age-related changes in immune function (immune senescence) in caries and periodontal diseases: a systematic review. J Clin Periodontol 44(Suppl 18):S153–S177CrossRefPubMedGoogle Scholar
  37. Razak PA et al (2014) Geriatric oral health: a review article. J Int Oral Health 6:110–116PubMedPubMedCentralGoogle Scholar
  38. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13:875–887CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sierra F, Kohanski R (2017) Geroscience and the trans-NIH geroscience interest group. GSIG Gerosci 39:1–5CrossRefGoogle Scholar
  40. Socransky SS, Haffajee AD (1994) Evidence of bacterial etiology: a historical perspective. Periodontol 2000(5):7–25CrossRefGoogle Scholar
  41. Urfer SR et al (2017a) A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience 39:117–127CrossRefPubMedPubMedCentralGoogle Scholar
  42. Urfer SR et al (2017b) Asymptomatic heart valve dysfunction in healthy middle-aged companion dogs and its implications for cardiac aging. Geroscience 39:43–50CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, Caples K, Bradley L, Beaver LM, Ho E, Lohr CV, Perez VI (2017) Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16:564-574Google Scholar
  44. Wilkinson JE et al (2012) Rapamycin slows aging in mice. Aging Cell 11:675–682CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2017

Authors and Affiliations

  • Jonathan Y. An
    • 1
    • 2
  • Ellen K. Quarles
    • 2
  • Surapat Mekvanich
    • 2
  • Alex Kang
    • 2
  • Anthony Liu
    • 2
  • Danielle Santos
    • 2
  • Richard A. Miller
    • 3
  • Peter S. Rabinovitch
    • 2
  • Timothy C. Cox
    • 4
  • Matt Kaeberlein
    • 1
    • 2
    Email author
  1. 1.Department of Oral Health SciencesUniversity of Washington School of DentistrySeattleUSA
  2. 2.Department of PathologyUniversity of Washington School of MedicineSeattleUSA
  3. 3.Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborUSA
  4. 4.Center for Developmental Biology and Regenerative MedicineSeattle Children’s Research InstituteSeattleUSA

Personalised recommendations