Advertisement

AGE

, Volume 38, Issue 5–6, pp 433–443 | Cite as

Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds

  • Jessica Delhaye
  • Nicolas Salamin
  • Alexandre Roulin
  • François Criscuolo
  • Pierre Bize
  • Philippe Christe
Original Article

Abstract

Mitochondrial respiration releases reactive oxygen species (ROS) as by-products that can damage the soma and may in turn accelerate ageing. Hence, according to “the oxidative stress theory of ageing”, longer-lived organisms may have evolved mechanisms that improve mitochondrial function, reduce ROS production and/or increase cell resistance to oxidative damage. Cardiolipin, an important mitochondrial inner-membrane phospholipid, has these properties by binding and stabilizing mitochondrial inner-membrane proteins. Here, we investigated whether ROS production, cardiolipin content and cell membrane resistance to oxidative attack in freshly collected red blood cells (RBCs) are associated with longevity (range 5–35 years) in 21 bird species belonging to seven Orders. After controlling for phylogeny, body size and oxygen consumption, variation in maximum longevity was significantly explained by mitochondrial ROS production and cardiolipin content, but not by membrane resistance to oxidative attack. RBCs of longer-lived species produced less ROS and contained more cardiolipin than RBCs of shorter-lived species did. These results support the oxidative stress theory of ageing and shed light on mitochondrial cardiolipin as an important factor linking ROS production to longevity.

Keywords

Birds Comparative methods Free radicals Longevity Phospholipids 

Notes

Acknowledgments

This work was supported by the Swiss National Science Foundation (31003A-124988/1 to PB, 31003A-138187 and 31003A-159600/1 to PC). We are grateful to the staff of La Vaux-Lierre for giving us access to the bird care centre, to Sylvie Massemin and Jean-Patrice Robin for their help in data sampling and to Olivier Glaizot and two anonymous reviewers for their comments on the manuscript.

References

  1. Acehan D, Malhotra A, Xu Y, Ren M, Stokes DL, Schlame M (2011) Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J 100:2184–2192CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Sorci G (2004) Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett 7:363–368CrossRefGoogle Scholar
  3. Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251CrossRefPubMedGoogle Scholar
  4. Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318PubMedGoogle Scholar
  5. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581PubMedGoogle Scholar
  6. Bize P, Devevey G, Monaghan P, Doligez B, Christe P (2008) Fecundity and survival in relation to resistance to oxidative stress in a free-living bird. Ecology 89:2584–2593CrossRefPubMedGoogle Scholar
  7. Bize P, Cotting S, Devevey G, van Rooyen J, Lalubin F, Glaizot O, Christe P (2014) Senescence in cell oxidative status in two bird species with contrasting life expectancy. Oecologia 174:1097–1105CrossRefPubMedGoogle Scholar
  8. Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ (2003) Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J 376:741–748CrossRefPubMedPubMedCentralGoogle Scholar
  9. Braun EJ, Sweazea KL (2008) Glucose regulation in birds. Comp Biochem Physiol Part B Biochem Mol Biol 151:1–9CrossRefGoogle Scholar
  10. Calhoon EA, Jimenez AG, Harper JM, Jurkowitz MS, Williams JB (2014) Linkages between mitochondrial lipids and life history in temperate and tropical birds. Physiol Biochem Zool 87:265–275CrossRefPubMedGoogle Scholar
  11. Criscuolo F, Font-Sala C, Bouillaud F, Poulin N, Trabalon M (2010) Increased ROS production: a component of the longevity equation in the male mygalomorph, Brachypelma albopilosa. PLoS One 5:e13104CrossRefPubMedPubMedCentralGoogle Scholar
  12. Csiszar A, Podlutsky A, Podlutskaya N, Sonntag WE, Merlin SZ, Philipp EER, Doyle K, Davila A, Recchia FA, Ballabh P, Pinto JT, Ungvari Z (2012) Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production? J Gerontol Ser A Biol Sci Med Sci 67:841–852CrossRefGoogle Scholar
  13. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  14. Emaresi G, Henry I, Gonzalez E, Roulin A, Bize P (2016) Sex- and melanic-specific variations in the oxidative status of adult tawny owls in response to manipulated reproductive effort. J Exp Biol 219:73--79Google Scholar
  15. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefPubMedGoogle Scholar
  16. Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880PubMedGoogle Scholar
  17. Galván I, Naudí A, Erritzøe J, Møller AP, Barja G, Pamplona R (2015) Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 69:2776–2784CrossRefPubMedGoogle Scholar
  18. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  19. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768CrossRefPubMedGoogle Scholar
  20. Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39CrossRefPubMedGoogle Scholar
  21. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300CrossRefPubMedGoogle Scholar
  22. Herrero A, Barja G (1998) H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech Ageing Dev 103:133–146CrossRefPubMedGoogle Scholar
  23. Hoch FL (1998) Mini review: cardiolipins and mitochondrial proton-selective leakage. J Bioenerg Biomembr 30:511–532CrossRefPubMedGoogle Scholar
  24. Holmes D, Martin K (2009) A bird’s-eye view of aging: what’s in it for ornithologists? Auk 126:1–23CrossRefGoogle Scholar
  25. Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506CrossRefPubMedGoogle Scholar
  26. Hulbert AJ (2003) Life, death and membrane bilayers. J Exp Biol 206:2303–2311CrossRefPubMedGoogle Scholar
  27. Hulbert AJ (2008) Explaining longevity of different animals: is membrane fatty acid composition the missing link? Age 30:89–97CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hulbert AJ (2010) Metabolism and longevity: is there a role for membrane fatty acids? Integr Comp Biol 50:808–817CrossRefPubMedGoogle Scholar
  29. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213CrossRefPubMedGoogle Scholar
  30. Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618CrossRefPubMedGoogle Scholar
  31. López-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32:882–889CrossRefPubMedGoogle Scholar
  32. Losdat S, Helfenstein F, Blount JD, Marri V, Maronde L, Richner H (2012) Nestling erythrocyte resistance to oxidative stress predicts fledging success but not local recruitment in a wild bird. Biol Lett 9:20120888CrossRefPubMedGoogle Scholar
  33. Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091CrossRefPubMedPubMedCentralGoogle Scholar
  34. Montgomery MK, Hulbert AJ, Buttemer WA (2012) Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production. Exp Gerontol 47:203–210CrossRefPubMedGoogle Scholar
  35. Mukhopadhyay P, Rajesh M, Yoshihiro K, Haskó G, Pacher P (2007) Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 358:203–208CrossRefPubMedPubMedCentralGoogle Scholar
  36. Naudí A, Jové M, Ayala V, Portero-Otín M, Barja G, Pamplona R (2013) Membrane lipid unsaturation as physiological adaptation to animal longevity. Front Physiol 4:1–13CrossRefGoogle Scholar
  37. Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249CrossRefPubMedGoogle Scholar
  38. Orme D (2013) The caper package: comparative analysis of phylogenetics and evolution in R., http://cran.r-project.org/web/packages/caper/vignettes/caper.pdf Google Scholar
  39. Pamplona R, Costantini D (2011) Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 301:R843–R863CrossRefPubMedGoogle Scholar
  40. Pamplona R, Barja G, Portero-Otín M (2002) Membrane fatty acid unsaturation, protection against oxidative stress and maximum life span. A homeoviscous-longevity adaptation? Ann N Y Acad Sci 959:475–490CrossRefPubMedGoogle Scholar
  41. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326CrossRefPubMedGoogle Scholar
  42. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141CrossRefPubMedGoogle Scholar
  43. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 48:1286–1295CrossRefPubMedGoogle Scholar
  44. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T (2007a) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5:e110.Google Scholar
  45. Passos JF, von Zglinicki T, Kirkwood TBL (2007b) Mitochondria and ageing: winning and losing in the numbers game. BioEssays. 29:908–917.Google Scholar
  46. Petrosillo G, Ruggiero FM, Venosa NDI, Paradies G (2003) Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 17:714–716CrossRefPubMedGoogle Scholar
  47. Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G (2009) Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med 46:88–94CrossRefPubMedGoogle Scholar
  48. Quinn GP, Keough MJ (2006) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  49. Robert KA, Brunet-Rossinni A, Bronikowski AM (2007) Testing the “free radical theory of aging” hypothesis: physiological differences in long-lived and short-lived colubrid snakes. Aging Cell 6:395–404CrossRefPubMedGoogle Scholar
  50. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  51. Salin K, Auer SK, Rey B, Selman C, Metcalfe NB (2015) Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc R Soc London B Biol Sci 282:20151028CrossRefGoogle Scholar
  52. Schlame M, Ren M (2006) Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett 580:5450–5455CrossRefPubMedGoogle Scholar
  53. Schlame M, Ren M (2009) The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta 1788:2080–2083CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288CrossRefPubMedGoogle Scholar
  55. Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730CrossRefPubMedGoogle Scholar
  56. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  57. Stier A, Bize P, Schull Q, Zoll J, Singh F, Geny B, Gros F, Royer C, Massemin S, Criscuolo F (2013) Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing. Front Zool 10:33CrossRefPubMedPubMedCentralGoogle Scholar
  58. Stier A, Reichert S, Criscuolo F, Bize P (2015) Red blood cells open promising avenues for longitudinal studies of ageing in laboratory, non-model and wild animals. Exp Gerontol 71:118–134CrossRefPubMedGoogle Scholar
  59. Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhães JP (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 41:D1027–D1033CrossRefPubMedGoogle Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  61. Valencak TG, Ruf T (2013) Phospholipid composition and longevity: lessons from Ames dwarf mice. Age (Omaha) 35:2303–2313CrossRefGoogle Scholar
  62. Zhou J, Zhong Q, Greenberg ML (2006) Decreased life span in cardiolipin mutants. FASEB 20:A1357Google Scholar

Copyright information

© American Aging Association 2016

Authors and Affiliations

  • Jessica Delhaye
    • 1
  • Nicolas Salamin
    • 1
    • 2
  • Alexandre Roulin
    • 1
  • François Criscuolo
    • 3
  • Pierre Bize
    • 1
    • 4
  • Philippe Christe
    • 1
  1. 1.Department of Ecology and Evolution, Quartier Sorge, bâtiment BiophoreUniversity of LausanneLausanneSwitzerland
  2. 2.Swiss Institute of BioinformaticsQuartier SorgeLausanneSwitzerland
  3. 3.IPHC, UNISTRA, CNRSStrasbourgFrance
  4. 4.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations