Advertisement

AGE

, 38:60 | Cite as

Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway

  • Yan-qing Chen
  • Jing Zhao
  • Cheng-wei Jin
  • Yi-hui Li
  • Meng-xiong Tang
  • Zhi-hao Wang
  • Wei Zhang
  • Yun Zhang
  • Li LiEmail author
  • Ming ZhongEmail author
Article

Abstract

Testosterone deficiency is associated with a higher incidence of cardiovascular diseases in men. However, its effect on cell senescence, which plays a causal role in vascular aging, remains unclear. Here, we tested the hypothesis that testosterone alleviated vascular smooth muscle cell (VSMC) senescence and collagen synthesis via growth arrest-specific protein 6 (Gas6)/Axl- and Akt/FoxO1a-dependent pathways. Testosterone significantly ameliorated angiotensin II-induced VSMC senescence and collagen overexpression. In addition, testosterone inhibited angiotensin II-induced matrix metalloproteinase-2 (MMP-2) activity, which played a pivotal role in facilitating age-related collagen deposition. Testosterone increased the expression of tissue inhibitor of metalloproteinase-2 but decreased the expression of MMP-2 and membrane type-1 metalloproteinase which contributed to increase MMP-2 activity. The effects on VSMCs senescence and collagen synthesis were mediated by restoration of angiotensin II-induced downregulation of Gas6 and Axl expression and a subsequent reduction of Akt and FoxO1a phosphorylation. The effects of testosterone were reversed by a Gas6 blocker, Axl-Fc, and a specific inhibitor of Axl, R428. Treatment of VSMCs with PI3K inhibitor LY294002 abrogated the downregulating effect of testosterone on MMP-2 activity. Furthermore, when FoxO1a expression was silenced by using a specific siRNA, the inhibitory effect of testosterone on MMP-2 activity was revered as well, that indicated this process was Akt/FoxO1a dependence. Taken together, Gas6/Axl and Akt/FoxO1a were involved in protective effects of testosterone on VSMCs senescence and collagen synthesis. Our results provide a novel mechanism underlying the protective effect of testosterone on vascular aging and may serve as a theoretical basis for testosterone replacement therapy.

Keywords

Testosterone Growth arrest-specific protein 6 (Gas6)/Axl Vascular smooth muscle cell Cellular senescence Collagen 

Notes

Acknowledgments

This work was supported by the research grants from the National Basic Research Program of China (973 Program, Grant No. 2013CB530700), the National Natural Science Foundation of China (81100605, 81270352, 81270287, 81300168, 81471036, 81470560, and 81570400), the Natural Science Foundation of Shandong Province (BS2013YY017, ZR2014HQ037), the Key Research and Development Program of Shandong Province (2015GSF118062), cardiovascular exploration research foundation of Chinese Medical Doctor Association (DFCMDA201320), and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20130131120065).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11357_2016_9910_Fig7_ESM.gif (261 kb)
ESM 1

The primary data of Fig. 1 (GIF 260 kb)

11357_2016_9910_MOESM1_ESM.tif (9.5 mb)
High resolution image (TIFF 9724 kb)
11357_2016_9910_Fig8_ESM.gif (304 kb)
ESM 2

The primary data of Fig. 2 (GIF 303 kb)

11357_2016_9910_MOESM2_ESM.tif (12.2 mb)
High resolution image (TIFF 12518 kb)
11357_2016_9910_Fig9_ESM.gif (206 kb)
ESM 3

The primary data of Fig. 3 (GIF 205 kb)

11357_2016_9910_MOESM3_ESM.tif (4.4 mb)
High resolution image (TIFF 4531 kb)
11357_2016_9910_Fig10_ESM.gif (200 kb)
ESM 4

The primary data of Fig. 4 (GIF 200 kb)

11357_2016_9910_MOESM4_ESM.tif (5 mb)
High resolution image (TIFF 5142 kb)
11357_2016_9910_Fig11_ESM.gif (254 kb)
ESM 5

The primary data of Fig. 5 (GIF 254 kb)

11357_2016_9910_MOESM5_ESM.tif (4.2 mb)
High resolution image (TIFF 4268 kb)
11357_2016_9910_Fig12_ESM.gif (227 kb)
ESM 6

The primary data of Fig. 6 (GIF 227 kb)

11357_2016_9910_MOESM6_ESM.tif (5.6 mb)
High resolution image (TIFF 5760 kb)
11357_2016_9910_Fig13_ESM.gif (89 kb)
ESM 7

The primary data of ESM 8 (GIF 88 kb)

11357_2016_9910_MOESM7_ESM.tif (3.5 mb)
High resolution image (TIFF 3574 kb)
11357_2016_9910_Fig14_ESM.gif (54 kb)
ESM 8

The Akt signaling pathway is involved in the anti-senescence effect of testosterone (A) The PI3K inhibitor, LY294002 could reverse the downregulating effects of testosterone on the expression of p16INK4a and p21Cip1 (P<0.05) induced by angiotensin II. But the regulating effect of LY294002 on p16INK4a expression was much weaker. Angiotensin II (Ang II), testosterone (T). Values are mean±SD of three measurements. *P<0.05 and **P<0.01 compared with control group; #P<0.05 and ##P<0.01compared with angiotensin II-treated group; †P<0.05 compared with testosterone-treated group (GIF 54 kb)

11357_2016_9910_MOESM8_ESM.tif (6.7 mb)
High resolution image (TIFF 6876 kb)

References

  1. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522. doi: 10.1016/j.cell.2005.02.003 CrossRefPubMedGoogle Scholar
  2. Ganopolsky JG, Abid MR, Aird WC, Blostein MD (2008) GAS6-induced signaling in human endothelial cells is mediated by FOXO1a. J Thromb Haemost 6:1804–1811. doi: 10.1111/j.1538-7836.2008.03114.x CrossRefPubMedGoogle Scholar
  3. Gao BB, Stuart L, Feener EP (2008) Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol Cell Proteomics 7:2399–2409. doi: 10.1074/mcp.M800104-MCP200 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Goberdhan P, Dimri, et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367CrossRefGoogle Scholar
  5. Guo D et al. (2010) Loss of PI3Kgamma enhances cAMP-dependent MMP remodeling of the myocardial N-cadherin adhesion complexes and extracellular matrix in response to early biomechanical stress. Circ Res 107:1275–1289. doi: 10.1161/CIRCRESAHA.110.229054 CrossRefPubMedGoogle Scholar
  6. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B (2008) Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res 102:201–208. doi: 10.1161/CIRCRESAHA.107.158626 CrossRefPubMedGoogle Scholar
  7. Hung YJ, Lee CH, Chu NF, Shieh YS (2010) Plasma protein growth arrest-specific 6 levels are associated with altered glucose tolerance, inflammation, and endothelial dysfunction. Diabete Care 33:1840–1844. doi: 10.2337/dc09-1073 CrossRefGoogle Scholar
  8. Hurtado B et al. (2010) Association study between polymorphims in GAS6-TAM genes and carotid atherosclerosis. Thromb Haemost 104:592–598. doi: 10.1160/TH09-11-0787 CrossRefPubMedGoogle Scholar
  9. Hurtado B et al. (2011) Expression of the vitamin K-dependent proteins GAS6 and protein S and the TAM receptor tyrosine kinases in human atherosclerotic carotid plaques. Thromb Haemost 105:873–882. doi: 10.1160/TH10-10-0630 CrossRefPubMedGoogle Scholar
  10. Jiang L, Zhang J, Monticone RE, Telljohann R, Wu J, Wang M, Lakatta EG (2012) Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension 60:1192–1199. doi: 10.1161/HYPERTENSIONAHA.112.196840 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jin CW et al. (2015) Gas6 delays senescence in vascular smooth muscle cells through the PI3K/Akt/FoxO signaling pathway. Cell Physiol Biochem 35:1151–1166. doi: 10.1159/000373940 CrossRefPubMedGoogle Scholar
  12. Jones TH, Saad F (2009) The effects of testosterone on risk factors for, and the mediators of, the atherosclerotic process. Atherosclerosis 207:318–327. doi: 10.1016/j.atherosclerosis.2009.04.016 CrossRefPubMedGoogle Scholar
  13. Jones RD, Nettleship JE, Kapoor D, Jones HT, Channer KS (2005) Testosterone and atherosclerosis in aging men: purported association and clinical implications. Am J Cardiovasc Drugs 5:141–154CrossRefPubMedGoogle Scholar
  14. Kadri Z et al. (2005) Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol Cell Biol 25:7412–7422. doi: 10.1128/MCB.25.17.7412-7422.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Korshunov VA, Mohan AM, Georger MA, Berk BC (2006) Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling. Circ Res 98:1446–1452. doi: 10.1161/01.RES.0000223322.16149.9a CrossRefPubMedGoogle Scholar
  16. Kovacic JC, Moreno P, Hachinski V, Nabel EG, Fuster V (2011a) Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation 123:1650–1660. doi: 10.1161/CIRCULATIONAHA.110.007021 CrossRefPubMedGoogle Scholar
  17. Kovacic JC, Moreno P, Nabel EG, Hachinski V, Fuster V (2011b) Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly. Circulation 123:1900–1910. doi: 10.1161/CIRCULATIONAHA.110.009118 CrossRefPubMedGoogle Scholar
  18. Kunieda T et al. (2006) Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 114:953–960. doi: 10.1161/CIRCULATIONAHA.106.626606 CrossRefPubMedGoogle Scholar
  19. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107:490–497. doi: 10.1161/01.CIR.0000048894.99865.02 CrossRefPubMedGoogle Scholar
  20. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “Set up” for vascular disease. Circulation 107:139–146. doi: 10.1161/01.cir.0000048892.83521.58 CrossRefPubMedGoogle Scholar
  21. Lemke G (2013) Biology of the TAM receptors. Cold Spring Harb Perspect Biol 5:a009076. doi: 10.1101/cshperspect.a009076 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lopes RA, Neves KB, Carneiro FS, Tostes RC (2012) Testosterone and vascular function in aging. Front Physiol 3:89. doi: 10.3389/fphys.2012.00089 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lutgens E et al. (2008) Genetic loss of Gas6 induces plaque stability in experimental atherosclerosis. J Pathol 216:55–63. doi: 10.1002/path.2381 CrossRefPubMedGoogle Scholar
  24. Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100:15–26. doi: 10.1161/01.RES.0000256837.40544.4a CrossRefPubMedGoogle Scholar
  25. Munoz X, Obach V, Hurtado B, de Frutos PG, Chamorro A, Sala N (2007) Association of specific haplotypes of GAS6 gene with stroke. Thromb Haemost 98:406–412PubMedGoogle Scholar
  26. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19:1110–1120. doi: 10.1089/ars.2012.4641 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54:787–793CrossRefPubMedGoogle Scholar
  28. Seyrek M, Yildiz O, Ulusoy HB, Yildirim V (2007) Testosterone relaxes isolated human radial artery by potassium channel opening action. J Pharmacol Sci 103:309–316CrossRefPubMedGoogle Scholar
  29. Sharma R et al. (2015) Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men. Eur Heart J. doi: 10.1093/eurheartj/ehv346 Google Scholar
  30. Shen YH et al. (2013) AKT2 confers protection against aortic aneurysms and dissections. Circ Res 112:618–632. doi: 10.1161/CIRCRESAHA.112.300735 CrossRefPubMedGoogle Scholar
  31. Son BK et al. (2010) Androgen receptor-dependent transactivation of growth arrest-specific gene 6 mediates inhibitory effects of testosterone on vascular calcification. J Biol Chem 285:7537–7544. doi: 10.1074/jbc.M109.055087 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Vlachopoulos C et al. (2014) Testosterone deficiency: a determinant of aortic stiffness in men. Atherosclerosis 233:278–283. doi: 10.1016/j.atherosclerosis.2013.12.010 CrossRefPubMedGoogle Scholar
  33. Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111:245–259. doi: 10.1161/CIRCRESAHA.111.261388 CrossRefPubMedGoogle Scholar
  34. Wang M et al. (2003) Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension 41:1308–1316. doi: 10.1161/01.HYP.0000073843.56046.45 CrossRefPubMedGoogle Scholar
  35. Wang M et al. (2012) Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension 60:459–466. doi: 10.1161/HYPERTENSIONAHA.112.191270 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wang M, Jiang L, Monticone RE, Lakatta EG (2014) Proinflammation: the key to arterial aging. Trends Endocrinol Metab 25:72–79. doi: 10.1016/j.tem.2013.10.002 CrossRefPubMedGoogle Scholar
  37. Yildiz O (2007a) Vascular smooth muscle and endothelial functions in aging. Ann N Y Acad Sci 1100:353–360. doi: 10.1196/annals.1395.038 CrossRefPubMedGoogle Scholar
  38. Yildiz O, Seyrek M (2007b) Vasodilating mechanisms of testosterone. Exp Clin Endocrinol Diabetes 115:1–6. doi: 10.1055/s-2007-949657 CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association 2016

Authors and Affiliations

  • Yan-qing Chen
    • 1
  • Jing Zhao
    • 1
  • Cheng-wei Jin
    • 1
    • 2
  • Yi-hui Li
    • 1
  • Meng-xiong Tang
    • 3
  • Zhi-hao Wang
    • 4
  • Wei Zhang
    • 1
  • Yun Zhang
    • 1
  • Li Li
    • 1
    Email author
  • Ming Zhong
    • 1
    Email author
  1. 1.The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJi’nanPeople’s Republic of China
  2. 2.Department of CardiologyCentral Hospital of ZiboZiboPeople’s Republic of China
  3. 3.The Department of Emergency MedicineQilu Hospital of Shandong UniversityJi’nanPeople’s Republic of China
  4. 4.Department of GeriatricsQilu Hospital of Shandong UniversityJi’nanPeople’s Republic of China

Personalised recommendations