, 37:109 | Cite as

Effect of resistance training on C-reactive protein, blood glucose and lipid profile in older women with differing levels of RT experience

  • Alex S. RibeiroEmail author
  • Crisieli M. Tomeleri
  • Mariana F. Souza
  • Fábio Luiz C. Pina
  • Brad J. Schoenfeld
  • Matheus A. Nascimento
  • Danielle Venturini
  • Décio S. Barbosa
  • Edilson S. Cyrino


The purpose of this study was to analyze the effects of a progressive resistance training (RT) program on C-reactive protein (CRP), blood glucose (GLU), and lipid profile in older women with differing levels of RT experience. Sixty-five older women (68.9 ± 6.1 years, 67.1 ± 13.1 kg) were separated according to RT experience: an advanced group composed by 35 participants who previously carried out 24 weeks of RT and a novice group composed by 30 participants without previous experience in RT (n = 30). Both groups performed a RT program comprised of eight exercises targeting all the major muscles. Training was carried out 3 days/week for 8 weeks. Serum triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), GLU, and CRP concentrations were determined pre- and post- intervention after 12 h fasting. A significant group by time interaction (P < 0.05) for the TC (novice = −1.9 % vs. advanced = 1.0 %), and CRP (novice = −22.9 % vs. advanced = −54.5 %) was observed. A main effect of time (P < 0.05) was identified for the GLU (novice = −2.6 % vs. advanced = −6.6 %), TG (novice = −12.9 % vs. advanced = −5.7 %), HDL-C (novice = +6.7 % vs. advanced = +2.6 %), and LDL-C (novice = −34.0 % vs. advanced = −25.4 %). These results suggest that RT improves the metabolic profile of older women and that training for a longer period of time seems to produce more pronounced reductions mainly on CRP.


Aging C-reactive protein Lipoproteins Strength training 


Compliance with ethical standards

Written informed consent was obtained from all participants after a detailed description of study procedures was provided. This investigation was conducted according to the Declaration of Helsinki and was approved by the local University Ethics Committee.


  1. American College of Sports Medicine position stand (2009) Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708. doi: 10.1249/MSS.0b013e3181915670 CrossRefGoogle Scholar
  2. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K (2003) Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89:555–563. doi: 10.1007/s00421-003-0833-3 PubMedCrossRefGoogle Scholar
  3. Amarante do Nascimento M, Borges Januario RS, Gerage AM, Mayhew JL, Cheche Pina FL, Cyrino ES (2013) Familiarization and reliability of one repetition maximum strength testing in older women. J Strength Cond Res 27:1636–1642. doi: 10.1519/JSC.0b013e3182717318 PubMedCrossRefGoogle Scholar
  4. Buresh R, Berg K (2014) Role of exercise on inflamation and chronic disease. Strength Cond J 36:87–93CrossRefGoogle Scholar
  5. Calle MC, Fernandez ML (2010) Effects of resistance training on the inflammatory response. Nutr Res Pract 4:259–269. doi: 10.4162/nrp.2010.4.4.259 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associate, HillsdaleGoogle Scholar
  7. Conceicao MS et al. (2013) Sixteen weeks of resistance training can decrease the risk of metabolic syndrome in healthy postmenopausal women. Clin Interv Aging 8:1221–1228. doi: 10.2147/CIA.S44245 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Damas F, Phillips S, Vechin FC, Ugrinowitsch C (2015) A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 45:801–807. doi: 10.1007/s40279-015-0320-0 PubMedCrossRefGoogle Scholar
  9. Davison S, Davis SR (2003) New markers for cardiovascular disease risk in women: impact of endogenous estrogen status and exogenous postmenopausal hormone therapy. J Clin Endocrinol Metab 88:2470–2478. doi: 10.1210/jc.2002-021929 PubMedCrossRefGoogle Scholar
  10. de Salles BF, Simao R, Fleck SJ, Dias I, Kraemer-Aguiar LG, Bouskela E (2010) Effects of resistance training on cytokines. Int J Sports Med 31:441–450. doi: 10.1055/s-0030-1251994 PubMedCrossRefGoogle Scholar
  11. Donges CE, Duffield R, Drinkwater EJ (2010) Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med Sci Sports Exerc 42:304–313. doi: 10.1249/MSS.0b013e3181b117ca PubMedCrossRefGoogle Scholar
  12. Donges CE, Duffield R, Guelfi KJ, Smith GC, Adams DR, Edge JA (2013) Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men. Appl Physiol Nutr Metab 38:779–788. doi: 10.1139/apnm-2012-0443 PubMedCrossRefGoogle Scholar
  13. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  14. Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med 36:133–149PubMedCrossRefGoogle Scholar
  15. Garber CE et al. (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb PubMedCrossRefGoogle Scholar
  16. Kelley GA, Kelley KS (2009) Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Prev Med 48:9–19. doi: 10.1016/j.ypmed.2008.10.010 PubMedCrossRefGoogle Scholar
  17. Kengne AP, Batty GD, Hamer M, Stamatakis E, Czernichow S (2012) Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from four U.K. prospective cohort studies. Diabetes Care 35:396–403. doi: 10.2337/dc11-1588 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76:378–383PubMedGoogle Scholar
  19. Lambert CP, Flynn MG (2002) Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med 32:511–522PubMedCrossRefGoogle Scholar
  20. Lee JS, Kim CG, Seo TB, Kim HG, Yoon SJ (2015) Effects of 8-week combined training on body composition, isokinetic strength, and cardiovascular disease risk factors in older women. Aging Clin Exp Res 27:179–186. doi: 10.1007/s40520-014-0257-4 PubMedCrossRefGoogle Scholar
  21. Lera Orsatti F, Nahas EA, Maesta N, Nahas Neto J, Lera Orsatti C, Vannucchi Portari G, Burini RC (2014) Effects of resistance training frequency on body composition and metabolics and inflammatory markers in overweight postmenopausal women. J Sports Med Phys Fitness 54:317–325PubMedGoogle Scholar
  22. Lira FS et al. (2010) Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetol Metab Syndr 2:31. doi: 10.1186/1758-5996-2-31 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Maesta N, Nahas EA, Nahas-Neto J, Orsatti FL, Fernandes CE, Traiman P, Burini RC (2007) Effects of soy protein and resistance exercise on body composition and blood lipids in postmenopausal women. Maturitas 56:350–358. doi: 10.1016/j.maturitas.2006.10.001 PubMedCrossRefGoogle Scholar
  24. Mann S, Beedie C, Jimenez A (2014) Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med 44:211–221. doi: 10.1007/s40279-013-0110-5 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Marques E, Carvalho J, Soares JM, Marques F, Mota J (2009) Effects of resistance and multicomponent exercise on lipid profiles of older women. Maturitas 63:84–88. doi: 10.1016/j.maturitas.2009.03.003 PubMedCrossRefGoogle Scholar
  26. Mavros Y et al. (2014) Reductions in C-reactive protein in older adults with type 2 diabetes are related to improvements in body composition following a randomized controlled trial of resistance training. J Cachexia Sarcopenia Muscle 5:111–120. doi: 10.1007/s13539-014-0134-1 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Nikseresht M, Sadeghifard N, Agha-Alinejad H, Ebrahim K (2014) Inflammatory markers and adipocytokine responses to exercise training and detraining in men who are obese. J Strength Cond Res 28:3399–3410. doi: 10.1519/JSC.0000000000000553 PubMedCrossRefGoogle Scholar
  28. Pai JK et al. (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351:2599–2610. doi: 10.1056/NEJMoa040967 PubMedCrossRefGoogle Scholar
  29. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. doi: 10.1152/physrev.90100.2007 PubMedCrossRefGoogle Scholar
  30. Phillips MD, Patrizi RM, Cheek DJ, Wooten JS, Barbee JJ, Mitchell JB (2012) Resistance training reduces subclinical inflammation in obese, postmenopausal women. Med Sci Sports Exerc 44:2099–2110. doi: 10.1249/MSS.0b013e3182644984 PubMedCrossRefGoogle Scholar
  31. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276:E118–E124PubMedGoogle Scholar
  32. Phillips SM, Winett RA (2010) Uncomplicated resistance training and health-related outcomes: evidence for a public health mandate. Curr Sports Med Rep 9:208–213. doi: 10.1249/JSR.0b013e3181e7da73 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Roeters van Lennep JE, Westerveld HT, Erkelens DW, van der Wall EE (2002) Risk factors for coronary heart disease: implications of gender. Cardiovasc Res 53:538–549PubMedCrossRefGoogle Scholar
  34. Selvin E, Paynter NP, Erlinger TP (2007) The effect of weight loss on C-reactive protein: a systematic review. Arch Intern Med 167:31–39. doi: 10.1001/archinte.167.1.31 PubMedCrossRefGoogle Scholar
  35. Sheikholeslami Vatani D, Ahmadi S, Ahmadi Dehrashid K, Gharibi F (2011) Changes in cardiovascular risk factors and inflammatory markers of young, healthy, men after six weeks of moderate or high intensity resistance training. J Sports Med Phys Fitness 51:695–700PubMedGoogle Scholar
  36. Simonavice E, Liu PY, Ilich JZ, Kim JS, Arjmandi B, Panton LB (2014) The effects of a 6-month resistance training and dried plum consumption intervention on strength, body composition, blood markers of bone turnover, and inflammation in breast cancer survivors. Appl Physiol Nutr Metab 39:730–739. doi: 10.1139/apnm-2013-0281 PubMedCrossRefGoogle Scholar
  37. Stewart LK et al. (2007) The influence of exercise training on inflammatory cytokines and C-reactive protein. Med Sci Sports Exerc 39:1714–1719. doi: 10.1249/mss.0b013e31811ece1c PubMedCrossRefGoogle Scholar
  38. Strasser B, Schobersberger W (2011) Evidence for resistance training as a treatment therapy in obesity. J Obes. doi: 10.1155/2011/482564 PubMedPubMedCentralGoogle Scholar
  39. Tan YY, Gast GC, van der Schouw YT (2010) Gender differences in risk factors for coronary heart disease. Maturitas 65:149–160. doi: 10.1016/j.maturitas.2009.09.023 PubMedCrossRefGoogle Scholar
  40. Williams AD, Almond J, Ahuja KD, Beard DC, Robertson IK, Ball MJ (2011) Cardiovascular and metabolic effects of community based resistance training in an older population. J Sci Med Sport 14:331–337. doi: 10.1016/j.jsams.2011.02.011 PubMedCrossRefGoogle Scholar
  41. Zaslavsky C, Gus I (2002) The elderly. heart disease and comorbidities. Arq Bras Cardiol 79:635–639PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2015

Authors and Affiliations

  • Alex S. Ribeiro
    • 1
    • 5
    Email author
  • Crisieli M. Tomeleri
    • 1
  • Mariana F. Souza
    • 1
  • Fábio Luiz C. Pina
    • 1
  • Brad J. Schoenfeld
    • 2
  • Matheus A. Nascimento
    • 1
    • 4
  • Danielle Venturini
    • 3
  • Décio S. Barbosa
    • 3
  • Edilson S. Cyrino
    • 1
  1. 1.Metabolism, Nutrition, and Exercise LaboratoryLondrina State UniversityLondrinaBrazil
  2. 2.Exercise Science DepartmentCUNY Lehman CollegeNew YorkUSA
  3. 3.Clinical Analyses LaboratoryLondrina State UniversityLondrinaBrazil
  4. 4.Paraná State UniversityParanavaíBrazil
  5. 5.JataizinhoBrazil

Personalised recommendations