Advertisement

AGE

, 37:98 | Cite as

Improving healthspan via changes in gut microbiota and fermentation

  • Michael J. Keenan
  • Maria L. Marco
  • Donald K. Ingram
  • Roy J. Martin
Article

Abstract

Dietary resistant starch impact on intestinal microbiome and improving healthspan is the topic of this review. In the elderly population, dietary fiber intake is lower than recommended. Dietary resistant starch as a source of fiber produces a profound change in gut microbiota and fermentation in animal models of aging. Dietary resistant starch has the potential for improving healthspan in the elderly through multiple mechanisms as follows: (1) enhancing gut microbiota profile and production of short-chain fatty acids, (2) improving gut barrier function, (3) increasing gut peptides that are important in glucose homeostasis and lipid metabolism, and (4) mimicking many of the effects of caloric restriction including upregulation of genes involved in xenobiotic metabolism.

Keywords

Resistant starch Gut microbiota Gut peptides Healthspan Prebiotic Gut health Short-chain fatty acids Butyrate Age-related anorexia Caloric restriction mimetic 

References

  1. Ao Z, Simsek S, Zhang G, Venkatachalam M, Reuhs BL, Hamaker BR (2007) Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J Agric Food Chem 55(11):4540–7PubMedCrossRefGoogle Scholar
  2. Baghurst K, Baghurst P (1994) Dietary flour, non-starch polysaccharide and resistant starch intakes in Australia. In: Spiller G (ed) CRC handbook of dietary fiber in human health. CRC Press LLC, Boca Raton, pp 583–91Google Scholar
  3. Bajka BH, Clarke JM, Topping DL, Cobiac L, Abeywardena MY, Patten GS (2010) Butyrylated starch increases large bowel butyrate levels and lowers colonic smooth muscle contractility in rats. Nutr Res 30(6):427–34PubMedCrossRefGoogle Scholar
  4. Berg DJ, Davidson N, Kuhn R et al (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(þ) TH1-like responses. J Clin Invest 98:1010–1020PubMedCentralPubMedCrossRefGoogle Scholar
  5. Beverly JL, Martin RJ (1991) Effect of glucoprivation on glutamate decarboxylase activity in the ventromedial nucleus. Physiol Behav 49(2):295–9PubMedCrossRefGoogle Scholar
  6. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667PubMedCentralPubMedCrossRefGoogle Scholar
  7. Birkett AM, Jones GP, de Silva AM, Young GP, Muir JG (1997) Dietary intake and faecal excretion of carbohydrate by Australians: importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. Eur J Clin Nutr 51(9):625–32PubMedCrossRefGoogle Scholar
  8. Blumberg R, Powrie F (2012) Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 4(137):137rv7PubMedCrossRefGoogle Scholar
  9. Bodinham CL, Smith L, Thomas EL, Bell JD, Swann JR, Costabile A, Russell-Jones D, Umpleby AM, Robertson MD (2014) Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr Connect 3(2):75–84PubMedCentralPubMedCrossRefGoogle Scholar
  10. Britton E, McLaughlin JT (2013) Ageing and the gut. Proc Nutr Soc 72(1):173–7PubMedCrossRefGoogle Scholar
  11. Bron PA, Wels M, Bongers RS, van Bokhorst-van de Veen H, Wiersma A, Overmars L, Marco ML, Kleerebezem M (2012) Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum. PLoS One 7(7), e38720PubMedCentralPubMedCrossRefGoogle Scholar
  12. Brown IL (2004) Applications and uses of resistant starch. J AOAC Int 87:727–732PubMedGoogle Scholar
  13. Burcelin R, Cani PD, Knauf C (2006) GLP-1 and cerebral detection of glucose, a key mechanism for the regulation of glucose homeostasis. Med Sci (Paris) 22(3):237–9CrossRefGoogle Scholar
  14. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–28PubMedCentralPubMedCrossRefGoogle Scholar
  15. Charrier JA, Martin RJ, McCutcheon KL, Raggio AM, Goldsmith F, Goita M, Senevirathne RN, Brown IL, Pelkman C, Zhou J, Finley J, Durham HA, Keenan MJ (2014) High fat diet partially attenuates fermentation responses in rats fed resistant starch from high-amylose maize. Obesity. doi: 10.1002/oby.20362 Google Scholar
  16. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591PubMedCentralPubMedCrossRefGoogle Scholar
  17. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–84PubMedCrossRefGoogle Scholar
  18. Clarke JM, Topping DL, Bird AR, Young GP, Cobiac L (2008) Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats. Carcinogenesis 29(11):2190–4PubMedCentralPubMedCrossRefGoogle Scholar
  19. Clarke JM, Topping DL, Christophersen CT, Bird AR, Lange K, Saunders I, Cobiac L (2011) Butyrate esterified to starch is released in the human gastrointestinal tract. Am J Clin Nutr 94(5):1276–83PubMedCrossRefGoogle Scholar
  20. Clegg DJ, Edwards GL, Martin RJ (2003) Central insulin potentiates eating elicited by 2-deoxy-D-glucose. Physiol Behav 78(2):331–6PubMedCrossRefGoogle Scholar
  21. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, ANR MicroObes consortium, Doré J, Zucker JD, Clément K, Ehrlich SD (2013) Dietary intervention impact on gut microbial gene richness. Nature 500(7464):585–8PubMedCrossRefGoogle Scholar
  22. Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M, González S (2013) Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr Res 33(10):811–6PubMedCrossRefGoogle Scholar
  23. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–63PubMedCentralPubMedCrossRefGoogle Scholar
  24. DeJonge KE, Taler G, Boling PA (2009) Independence at home: community-based care for older adults with severe chronic illness. Clin Geriatr Med 25(1):155–69Google Scholar
  25. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818PubMedCrossRefGoogle Scholar
  26. Drago L, Toscano M, Rodighiero V, De Vecchi E, Mogna G (2012) Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J Clin Gastroenterol 46(Suppl):S81–4PubMedCrossRefGoogle Scholar
  27. Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27(1):73–83PubMedCrossRefGoogle Scholar
  28. Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Delzenne NM, Schrenzel J, François P, Cani PD (2014) Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. doi: 10.1038/ismej.2014.45 PubMedCentralPubMedGoogle Scholar
  29. Fairhall N, Langron C, Sherrington C, Lord SR, Kurrle SE, Lockwood K, Monaghan N, Aggar C, Gill L, Cameron ID (2011) Treating frailty—a practical guide. BMC Med 9:83–90PubMedCentralPubMedCrossRefGoogle Scholar
  30. Flint HJ (2012) The impact of nutrition on the human microbiome. Nutr Rev 70(Suppl 1):S10–3PubMedCrossRefGoogle Scholar
  31. Gejl M, Lerche S, Egefjord L, Brock B, Møller N, Vang K, Rodell AB, Bibby BM, Holst JJ, Rungby J, Gjedde A (2013) Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain. Front Neuroenergetics 5:2PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ghosal S, Myers B, Herman JP (2013) Role of central glucagon-like peptide-1 in stress regulation. Physiol Behav. doi: 10.1016/j.physbeh.2013.04.003 PubMedCentralPubMedGoogle Scholar
  33. Goldring JM (2004) Resistant starch: safe intakes and legal status. J AOAC Int 87(3):733–9PubMedGoogle Scholar
  34. Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A (2011) Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 26(1):187–97PubMedGoogle Scholar
  35. Graber TG, Ferguson-Stegall L, Kim JH, Thompson LV (2013) C57BL/6 neuromuscular healthspan scoring system. J Gerontol A Biol Sci Med Sci 68(11):1326–36PubMedCentralPubMedCrossRefGoogle Scholar
  36. Gruenewald DA, Marck BT, Matsumoto AM (1996) Fasting-induced increases in food intake and neuropeptide Y gene expression are attenuated in aging male brown Norway rats. Endocrinology 137(10):4460–7PubMedGoogle Scholar
  37. Harris RB, Martin RJ (1984) Recovery of body weight from below “set point” in mature female rats. J Nutr 114(6):1143–50PubMedGoogle Scholar
  38. Hays NP, Roberts SB (2006) The anorexia of aging in humans. Physiol Behav 88(3):257–66PubMedCrossRefGoogle Scholar
  39. He B, White BD, Edwards GL, Martin RJ (1998) Neuropeptide Y antibody attenuates 2-deoxy-D-glucose induced feeding in rats. Brain Res 781(1–2):348–50PubMedCrossRefGoogle Scholar
  40. Higgins JA (2004) Resistant starch: metabolic effects and potential health benefits. J AOAC Int 87:761–768PubMedGoogle Scholar
  41. Higgins JA, Brown IL (2013) Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr Opin Gastroenterol 29(2):190–4PubMedCrossRefGoogle Scholar
  42. Higgins JA, Higbee DR, Donahoo WT, Brown IL, Bell ML, Bessesen DH (2004) Resistant starch consumption promotes lipid oxidation. Nutr Metab (Lond) 1(1):8CrossRefGoogle Scholar
  43. Higgins JA, Brown MA, Storlien LH (2006) Consumption of resistant starch decreases postprandial lipogenesis in white adipose tissue of the rat. Nutr J 20(5):25CrossRefGoogle Scholar
  44. Hippe B, Zwielehner J, Liszt K, Lassl C, Unger F, Haslberger AG (2011) Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol Lett 316(2):130–5PubMedCrossRefGoogle Scholar
  45. Hölscher C (2012) Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection. CNS Drugs 26(10):871–82PubMedCrossRefGoogle Scholar
  46. Holscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–41PubMedCrossRefGoogle Scholar
  47. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–39PubMedCrossRefGoogle Scholar
  48. Ingram DK (1985) Analysis of age-related impairments in learning and memory in rodent models. Ann N Y Acad Sci 444:313–31CrossRefGoogle Scholar
  49. Ingram DK, Roth GS (2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 46(2–3):148–54PubMedCrossRefGoogle Scholar
  50. Johansen KL (2010) Chronic kidney disease in elderly individuals. Arch Intern Med 170(11):926–927PubMedCrossRefGoogle Scholar
  51. Johnston KL, Thomas EL, Bell JD, Frost GS, Robertson MD (2010) Resistant starch improves insulin sensitivity in metabolic syndrome. Diabet Med 27(4):391–7PubMedCrossRefGoogle Scholar
  52. Kaneda T et al (2001) Differential neuropeptide responses to starvation with ageing. J Neuroendocrinol 13(12):1066–75PubMedCrossRefGoogle Scholar
  53. Kasser TR, Harris RB, Martin RJ (1989) Level of satiety: in vitro energy metabolism in brain during hypophagic and hyperphagic body weight recovery. Am J Physiol 257(6 Pt 2):R1322–7PubMedGoogle Scholar
  54. Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, Bateman HG, Todd E, Jones CK, Tulley RT, Melton S, Martin RJ, Hegsted M (2006) Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 14:1523–1534CrossRefGoogle Scholar
  55. Keenan MJ, Martin RJ, Raggio AM, McCutcheon KL, Brown IL, Birkitt A, Newman SS, Skaf J, Hegsted M, Tulley RT, Blair E, Zhou J (2012) A microarray study indicates high-amylose resistant starch increases hormones and improves structure and function of the GI tract. J Nutrigenetics Nutrigenomics 5:26–44CrossRefGoogle Scholar
  56. Keenan MJ, Janes M, Robert J, Martin RJ, Raggio AM, McCutcheon KL, Pelkman C, Tulley R, Goita M, Durham HA, Zhou J, Senevirathne RN (2013) Resistant starch from high amylose maize (HAM-RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats. Obesity (Silver Spring) 21(5):981–4CrossRefGoogle Scholar
  57. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108:8030–8035PubMedCentralPubMedCrossRefGoogle Scholar
  58. Kumar I, Khush GS (1986) Gene dosage effects of amylose content in rice endosperm. Jpn J Genet 61:559–568CrossRefGoogle Scholar
  59. Kwak JH, Paik JK, Kim HI, Kim OY, Shin DY, Kim HJ, Lee JH, Lee JH (2012) Dietary treatment with rice containing resistant starch improves markers of endothelial function with reduction of postprandial blood glucose and oxidative stress in patients with prediabetes or newly diagnosed type 2 diabetes. Atherosclerosis 224(2):457–64PubMedCrossRefGoogle Scholar
  60. Lane MA, Roth GS, Ingram DK (2007) Caloric restriction mimetics: a novel approach for biogerontology. Methods Mol Biol 371:143–9PubMedCrossRefGoogle Scholar
  61. Le Leu RK, Young GP, Hu Y, Winter J, Conlon MA (2013) Dietary red meat aggravates dextran sulfate sodium-induced colitis in mice whereas resistant starch attenuates inflammation. Dig Dis Sci 58(12):3475–82PubMedCrossRefGoogle Scholar
  62. Lee K, Li B, Xi X, Suh Y, Martin RJ (2005) Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 146(1):3–10PubMedCrossRefGoogle Scholar
  63. Ma T, Du X, Pick JE, Sui G, Brownlee M, Klann E (2012) Glucagon-like peptide-1 cleavage product GLP-1(9–36) amide rescues synaptic plasticity and memory deficits in Alzheimer’s disease model mice. J Neurosci 32(40):13701–8PubMedCentralPubMedCrossRefGoogle Scholar
  64. Marco ML, Bongers RS, de Vos WM, Kleerebezem M (2007) Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl Environ Microbiol 73(1):124–132PubMedCentralPubMedCrossRefGoogle Scholar
  65. Marco ML, Peters THF, Bongers RS, Molenaar D, van Hemert S, Sonnenburg JL, Gordon JI, Kleerebezem M (2009) Lifestyle of Lactobacillus plantarum in the mouse cecum. Environ Microbiol 11:2747–2757PubMedCentralPubMedCrossRefGoogle Scholar
  66. Marco ML, de Vries MC, Wels M, Molenaar D, Mangell P, Ahrne S, de Vos W, Vaughan EE, Kleerebezem M (2010) Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J 4:1481–1484PubMedCrossRefGoogle Scholar
  67. Mattison J, Black A, Huck J, Moscrip T, Handy A, Tilmont T, Roth GS, Lane MA, Ingram DK (2005) Age-related decline in caloric intake and motivation for food in rhesus monkeys. Neurobiol Aging 26:1117–27PubMedCrossRefGoogle Scholar
  68. McIntyre RS, Powell AM, Kaidanovich-Beilin O, Soczynska JK, Alsuwaidan M, Woldeyohannes HO, Kim AS, Gallaugher LA (2013) The neuroprotective effects of GLP-1: possible treatments for cognitive deficits in individuals with mood disorders. Behav Brain Res 15(237):164–71CrossRefGoogle Scholar
  69. McLaughlin HP, Motherway MO, Lakshminarayanan B, Stanton C, Paul Ross R, Brulc J, Menon R, O'Toole PW, van Sinderen D (2015) Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. Int J Food Microbiol 16(203):109–21. doi: 10.1016/j.ijfoodmicro.2015.03.008 CrossRefGoogle Scholar
  70. Morley JE (1997) Anorexia of aging: physiologic and pathologic. Am J Clin Nutr 66(4):760–73PubMedGoogle Scholar
  71. Morley JE (2009) Developing novel therapeutic approaches to frailty. Curr Pharm Des 15(29):3384–95PubMedCrossRefGoogle Scholar
  72. O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–93PubMedCentralPubMedCrossRefGoogle Scholar
  73. Park SH, Kim KA, Ahn YT, Jeong JJ, Huh CS, Kim DH (2015) Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC Microbiol 26(15):49. doi: 10.1186/s12866-015-0386-8 CrossRefGoogle Scholar
  74. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60PubMedCrossRefGoogle Scholar
  75. Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, O'Toole PW, Brigidi P (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 5(12):902–12Google Scholar
  76. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci U S A 103(10):3546–3551PubMedCentralPubMedCrossRefGoogle Scholar
  77. Reolon GK, Maurmann N, Werenicz A, Garcia VA, Schröder N, Wood MA, Roesler R (2011) Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats. Behav Brain Res 221(1):329–32. doi: 10.1016/j.bbr.2011.03.033 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 109(52):21528–33PubMedCentralPubMedCrossRefGoogle Scholar
  79. Roberts SB (1994) Control of food intake in older men. JAMA 272(20):1601–6PubMedCrossRefGoogle Scholar
  80. Robertson MD (2012) Dietary-resistant starch and glucose metabolism. Curr Opin Clin Nutr Metab Care 15(4):362–7PubMedCrossRefGoogle Scholar
  81. Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN (2005) Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82:559–567PubMedGoogle Scholar
  82. Salmean YA, Segal MS, Langkamp-Henken B, Canales MT, Zello GA, Dahl WJ (2013) Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J Ren Nutr 23(2):e29–32PubMedCrossRefGoogle Scholar
  83. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, de Vos WM (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. doi: 10.1038/ismej.2014.63 PubMedGoogle Scholar
  84. Schwiertz A, Lehmann U, Jacobasch G, Blaut M (2002) Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine. J Appl Microbiol 93(1):157–62PubMedCrossRefGoogle Scholar
  85. Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11(5):247–51PubMedCrossRefGoogle Scholar
  86. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904PubMedCrossRefGoogle Scholar
  87. Sepp E, Kolk H, Lõivukene K, Mikelsaar M (2014) Higher blood glucose level associated with body mass index and gut microbiota in elderly people. Microb Ecol Health Dis. 2014 Jun 3;25. doi:  10.3402/mehd.v25.22857
  88. Sestili F, Janni M, Doherty A, Botticella E, D'Ovidio R, Masci S, Jones HD, Domenico L (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10:144PubMedCentralPubMedCrossRefGoogle Scholar
  89. Shamliyan T, Talley KM, Ramakrishnan R, Kane RL (2013) Association of frailty with survival: a systematic literature review. Ageing Res Rev 12(2):719–36PubMedCrossRefGoogle Scholar
  90. Shen L, Keenan MJ, Raggio A, Williams C, Martin RJ (2011) Dietary resistant starch improves maternal glycemic control in Goto-Kakizaki rat. Mol Nutr Food Res 55:1499–1508PubMedCrossRefGoogle Scholar
  91. Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW (2014) Effect of Increasing Dietary Fiber on Plasma Levels of Colon-Derived Solutes in Hemodialysis Patients Clin J Am Soc Nephrol 9: ccc–ccc, doi:  10.2215/CJN.00490114
  92. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–35PubMedCentralPubMedCrossRefGoogle Scholar
  93. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–73PubMedCrossRefGoogle Scholar
  94. Steinbaugh MJ, Sun LY, Bartke A, Miller RA (2012) Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am J Physiol Endocrinol Metab 303:E488–E495PubMedCentralPubMedCrossRefGoogle Scholar
  95. Steinhoff U (2005) Who controls the crowd? New findings and old questions about the intestinal microflora. Immunol Lett 99(1):12–6PubMedCrossRefGoogle Scholar
  96. Sun X, Zhang B, Hong X, Zhang X, Kong X (2013) Histone deacetylase inhibitor, sodium butyrate, attenuates gentamicin-induced nephrotoxicity by increasing prohibitin protein expression in rats. Eur J Pharmacol 707(1–3):147–54PubMedCrossRefGoogle Scholar
  97. Tachon S, Zhou J, Keenan M, Martin R, Marco ML (2012) The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated to improvements in host responses. FEMS Microbiol Ecol. doi: 10.1111/j.1574-6941.2012.01475 PubMedGoogle Scholar
  98. Toden S, Bird AR, Topping DL, Conlon MA (2007) High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch. Carcinogenesis 28(11):2355–62PubMedCrossRefGoogle Scholar
  99. Vaĭserman AM, Koliada AK, Koshel' NM, Simonenko AV, Pasiukova EG (2012) Effect of the histone deacetylase inhibitor sodium butyrate on the viability and life span in Drosophila melanogaster. Adv Gerontol 25(1):126–31PubMedGoogle Scholar
  100. van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71:6438–6442PubMedCentralPubMedCrossRefGoogle Scholar
  101. Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O'Toole PW (2009) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7(1):61–71PubMedCrossRefGoogle Scholar
  102. Vidrine K, Ye J, Martin RJ, McCutcheon KL, Raggio AM, Pelkman C, Durham HA, Zhou J, Senevirathne RN, Williams C, Greenway F, Finley J, Gao Z, Goldsmith F, Keenan MJ (2013) Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity (Silver Spring). doi: 10.1002/oby.20109 Google Scholar
  103. Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, ato FT, Fock RA, Malheiros G, dos Santos MF, Curi R (2012) Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303(2):E272–82PubMedCrossRefGoogle Scholar
  104. Wolden-Hanson T, Marck BT, Matsumoto AM (2004) Blunted hypothalamic neuropeptide gene expression in response to fasting, but preservation of feeding responses to AgRP in aging male brown Norway rats. Am J Physiol Regul Integr Comp Physiol 287(1):R138–46PubMedCrossRefGoogle Scholar
  105. Wurtman JJ (1988) The anorexia of aging: a problem not restricted to calorie intake. Neurobiol Aging 9(1):22–3PubMedCrossRefGoogle Scholar
  106. Wutzke KD, Scholübbers D (2010) The metabolic effect of resistant starch and yoghurt on the renal and faecal nitrogen and ammonia excretion in humans as measured by lactose-[(15)N2]ureide. Isotopes Environ Isotopes Environ Health Stud 49(4):464–70CrossRefGoogle Scholar
  107. Yu BS, Wang AR (2008) Glucagon-like peptide 1 based therapy for type 2 diabetes. World J Pediatr 4(1):8–13PubMedCrossRefGoogle Scholar
  108. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy S, Hegsted M, Keenan MJ (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295(5):E1160–6PubMedCentralPubMedCrossRefGoogle Scholar
  109. Zhou J, Martin RJ, Tulley RT, Raggio AM, Shen L, Lissy E, McCutcheon K, Keenan MJ (2009) Failure to ferment dietary resistant starch in specific mouse models of obesity results in no body fat loss. J Agric Food Chem 57(19):8844–51PubMedCentralPubMedCrossRefGoogle Scholar
  110. Zhou J, Keenan MJ, Keller J, Fernandez-Kim SO, Pistell PJ, Tulley RT, Raggio AM, Shen L, Zhang H, Martin RJ, Blackman MR (2012) Tolerance, fermentation, and cytokine expression in healthy aged male C57BL/6J mice fed resistant starch. Mol Nutr Food Res 56(3):515–8PubMedCrossRefGoogle Scholar
  111. Zhou J, Keenan MJ, Fernandez-Kim SO, Pistell PJ, Ingram DK, Li B, Raggio AM, Shen L, Zhang H, McCutcheon KL, Tulley RT, Blackman MR, Keller JN, Martin RJ (2013) Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents. Mol Nutr Food Res. doi: 10.1002/mnfr.201300135 PubMedCentralGoogle Scholar
  112. Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, Haslberger AG (2009) Combined PCRDGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol 44(6–7):440–6PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2015

Authors and Affiliations

  1. 1.Louisiana State University Agricultural CenterBaton RougeUSA
  2. 2.Robert Mondavi Institute for Wine and Food ScienceDavisUSA
  3. 3.Pennington Biomedical Research CenterBaton RougeUSA
  4. 4.Western Human Nutrition Research CenterDavisUSA

Personalised recommendations