AGE

, 37:62 | Cite as

Analysis of gene expression during aging of CGNs in culture: implication of SLIT2 and NPY in senescence

  • K. Preeti Gupta
  • Pankaj Singh Dholaniya
  • Anil Chekuri
  • Anand K. Kondapi
Article

Abstract

Senescence is the major key factor that leads to the loss of neurons throughout aging. Cellular senescence is not the consequence of single cause, but there are multiple aspects which may induce senescence in a cell. Various causes such as gene expression, molecular interactions and protein processing and chromatin organization are described as causal factor for senescence. It is well known that the damage to the nuclear or mitochondrial DNA contributes to the aging either directly by inducing the apoptosis/cellular senescence or indirectly by altering cellular functions. The significant nuclear DNA damage with the age is directly associated with the continuous declining in DNA repair. The continuous decline in expression of topoisomerase 2 beta (Topo IIβ) in cultured cerebellar granule neurons over time indicated the decline in the repair of damage DNA. DNA Topo IIβ is an enzyme that is crucial for solving topological problems of DNA and thus has an important role in DNA repair. The enzyme is predominantly present in non-proliferating cells such as neurons. In this paper, we have studied the genes which were differentially expressed over time in cultured cerebellar granule neurons (CGNs) and identified potential genes associated with the senescence. Our results showed that the two genes neuropeptide Y (Npy) and Slit homolog 2 (Drosophila) (Slit2) gradually increase during aging, and upon suppression of these two genes, there was gradual increase in cell viability along with restoration of the expression of Topo IIβ and potential repair proteins.

Graphical abstract

Keywords

Senescence Oxidative stress Ageing ROS Cerebellar granule neurons 

Abbreviations

CGNs

Cerebellar granule neurons

DSBs

Double strand breaks

ROS

Reactive oxygen species

SSBs

Single-strand breaks

Topo IIβ

Topoisomerase IIβ

References

  1. Baker DJ et al (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10:825–836. doi:10.1038/ncb1744 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222. doi:10.1093/emboj/cdg417 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bhanu MU, Mandraju RK, Bhaskar C, Kondapi AK (2010) Cultured cerebellar granule neurons as an in vitro aging model: topoisomerase IIbeta as an additional biomarker in DNA repair and aging. Toxicol in Vitro Int J Publ Assoc BIBRA 24:1935–1945. doi:10.1016/j.tiv.2010.08.003 CrossRefGoogle Scholar
  4. Blalock EM, Porter NM, Landfield PW (1999) Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. J Neurosci Off J Soc Neurosci 19:8674–8684Google Scholar
  5. Borbely S et al (2009) Modification of ionotropic glutamate receptor-mediated processes in the rat hippocampus following repeated, brief seizures. Neuroscience 159:358–368. doi:10.1016/j.neuroscience.2008.12.027 PubMedCrossRefGoogle Scholar
  6. Braig M, Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66:2881–2884. doi:10.1158/0008-5472.CAN-05-4006 PubMedCrossRefGoogle Scholar
  7. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740PubMedCrossRefGoogle Scholar
  8. Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB (2002) Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci U S A 99:389–394. doi:10.1073/pnas.012602599 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chen QM, Liu J, Merrett JB (2000) Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 347:543–551PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chung HY et al (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30. doi:10.1016/j.arr.2008.07.002 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476PubMedCrossRefGoogle Scholar
  12. Contestabile A (2002) Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum 1:41–55. doi:10.1080/147342202753203087 PubMedCrossRefGoogle Scholar
  13. Davalos AR, Coppe JP, Campisi J, Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29:273–283. doi:10.1007/s10555-010-9220-9 PubMedCentralPubMedCrossRefGoogle Scholar
  14. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454. doi:10.1093/bioinformatics/bth078 PubMedCrossRefGoogle Scholar
  15. Di Micco R, Cicalese A, Fumagalli M, Dobreva M, Verrecchia A, Pelicci PG, di Fagagna F (2008) DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle 7:3601–3606PubMedCrossRefGoogle Scholar
  16. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367PubMedCentralPubMedCrossRefGoogle Scholar
  17. D’Mello SR, Galli C, Ciotti T, Calissano P (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci U S A 90:10989–10993PubMedCentralPubMedCrossRefGoogle Scholar
  18. Donner J et al (2012) Support for involvement of glutamate decarboxylase 1 and neuropeptide Y in anxiety susceptibility. Am J Med Genet B Neuropsychiatr Genet 159B:316–327. doi:10.1002/ajmg.b.32029 PubMedCrossRefGoogle Scholar
  19. Donze O, Picard D (2002) RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res 30, e46PubMedCentralPubMedCrossRefGoogle Scholar
  20. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868PubMedCentralPubMedCrossRefGoogle Scholar
  21. Faucheux BA et al (2009) Loss of cerebellar granule neurons is associated with punctate but not with large focal deposits of prion protein in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 68:892–901. doi:10.1097/NEN.0b013e3181af7f23 PubMedCrossRefGoogle Scholar
  22. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  23. Funayama R, Ishikawa F (2007) Cellular senescence and chromatin structure. Chromosoma 116:431–440. doi:10.1007/s00412-007-0115-7 PubMedCrossRefGoogle Scholar
  24. Galic MA, Riazi K, Henderson AK, Tsutsui S, Pittman QJ (2009) Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiol Dis 36:343–351. doi:10.1016/j.nbd.2009.07.025 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gupta KP, Swain U, Rao KS, Kondapi AK (2012) Topoisomerase IIbeta regulates base excision repair capacity of neurons. Mech Ageing Dev 133:203–213. doi:10.1016/j.mad.2012.03.010 PubMedCrossRefGoogle Scholar
  26. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  27. Heilig M et al (2004) Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism. J Psychiatr Res 38:113–121PubMedCrossRefGoogle Scholar
  28. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513PubMedCrossRefGoogle Scholar
  29. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257PubMedCrossRefGoogle Scholar
  30. Jeyapalan JC, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129:467–474. doi:10.1016/j.mad.2008.04.001 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Jurk D et al (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11:996–1004. doi:10.1111/j.1474-9726.2012.00870.x PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, Bartek J (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10:457–468PubMedCrossRefGoogle Scholar
  33. Lawless C, Wang C, Jurk D, Merz A, Zglinicki T, Passos JF (2010) Quantitative assessment of markers for cell senescence. Exp Gerontol 45:772–778. doi:10.1016/j.exger.2010.01.018 PubMedCrossRefGoogle Scholar
  34. Li M et al (2001) Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J Neurosci Off J Soc Neurosci 21:6544–6552Google Scholar
  35. Liang Y, Annan RS, Carr SA, Popp S, Mevissen M, Margolis RK, Margolis RU (1999) Mammalian homologues of the drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J Biol Chem 274:17885–17892PubMedCrossRefGoogle Scholar
  36. Liang WS et al (2008) Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genomics 33:240–256. doi:10.1152/physiolgenomics.00242.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019PubMedCentralPubMedCrossRefGoogle Scholar
  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)). Method Methods 25:402–408. doi:10.1006/meth.2001.1262 CrossRefGoogle Scholar
  39. Mandraju RK, Kannapiran P, Kondapi AK (2008) Distinct roles of topoisomerase II isoforms: DNA damage accelerating alpha, double strand break repair promoting beta. Arch Biochem Biophys 470:27–34. doi:10.1016/j.abb.2007.10.017 PubMedCrossRefGoogle Scholar
  40. Mantelingu K et al (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14:645–657PubMedCrossRefGoogle Scholar
  41. Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470PubMedCentralPubMedCrossRefGoogle Scholar
  42. Mi H et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–288. doi:10.1093/nar/gki078 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62PubMedCrossRefGoogle Scholar
  44. Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100:15–26PubMedCrossRefGoogle Scholar
  45. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  46. Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK (2004) Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 295:525–538. doi:10.1016/j.yexcr.2004.01.017 PubMedCrossRefGoogle Scholar
  47. Nakamura AJ, Chiang YJ, Hathcock KS, Horikawa I, Sedelnikova OA, Hodes RJ, Bonner WM (2008) Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenetics Chromatin 1:6. doi:10.1186/1756-8935-1-6 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ninomiya M et al (2010) Cortical neurons from intrauterine growth retardation rats exhibit lower response to neurotrophin BDNF. Neurosci Lett 476:104–109. doi:10.1016/j.neulet.2010.03.082 PubMedCrossRefGoogle Scholar
  49. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P, Wlaschek M (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5:379–389PubMedCrossRefGoogle Scholar
  50. Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484PubMedCentralPubMedCrossRefGoogle Scholar
  51. Senatore A et al (2012) Mutant PrP suppresses glutamatergic neurotransmission in cerebellar granule neurons by impairing membrane delivery of VGCC alpha(2)delta-1 Subunit. Neuron 74:300–313. doi:10.1016/j.neuron.2012.02.027 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602PubMedCrossRefGoogle Scholar
  53. Sikora E, Arendt T, Bennett M, Narita M (2011) Impact of cellular senescence signature on ageing research. Ageing Res Rev 10:146–152. doi:10.1016/j.arr.2010.10.002 PubMedCrossRefGoogle Scholar
  54. Tchkonia T et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684. doi:10.1111/j.1474-9726.2010.00608.x PubMedCentralPubMedCrossRefGoogle Scholar
  55. Tepper CG, Seldin MF, Mudryj M (2000) Fas-mediated apoptosis of proliferating, transiently growth-arrested, and senescent normal human fibroblasts. Exp Cell Res 260:9–19. doi:10.1006/excr.2000.4990 PubMedCrossRefGoogle Scholar
  56. Thibault O, Hadley R, Landfield PW (2001) Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J Neurosci Off J Soc Neurosci 21:9744–9756Google Scholar
  57. Thomas PD et al (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141. doi:10.1101/gr.772403 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Tryndyak VP, Han T, Muskhelishvili L, Fuscoe JC, Ross SA, Beland FA, Pogribny IP (2011) Coupling global methylation and gene expression profiles reveal key pathophysiological events in liver injury induced by a methyl-deficient diet. Mol Nutr Food Res 55:411–418. doi:10.1002/mnfr.201000300 PubMedCrossRefGoogle Scholar
  59. Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394PubMedCrossRefGoogle Scholar
  60. Wada T et al (2004) MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nat Cell Biol 6:215–226. doi:10.1038/ncb1098 PubMedCrossRefGoogle Scholar
  61. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311–323. doi:10.1111/j.1474-9726.2009.00481.x PubMedCrossRefGoogle Scholar
  62. Wettschureck N et al (2006) Forebrain-specific inactivation of Gq/G11 family G proteins results in age-dependent epilepsy and impaired endocannabinoid formation. Mol Cell Biol 26:5888–5894. doi:10.1128/MCB.00397-06 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Wilkin GP (1995) Neural cell culture: a practical approach. Oxford University Press, New York. http://searchworks.stanford.edu/view/3146133
  64. Xu ZQ, Chen ME, Jiang XJ, Wang JZ (2004) Changes of neuropeptide Y activity in plasma and brain tissue during intracerebral hemorrhage in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 16:218–220PubMedGoogle Scholar
  65. Yang DG, Liu L, Zheng XY (2008) Cyclin-dependent kinase inhibitor p16(INK4a) and telomerase may co-modulate endothelial progenitor cells senescence. Ageing Res Rev 7:137–146. doi:10.1016/j.arr.2008.02.001 PubMedCrossRefGoogle Scholar
  66. Yoon IK et al (2004) Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology. Exp Gerontol 39:1369–1378. doi:10.1016/j.exger.2004.07.002 PubMedCrossRefGoogle Scholar
  67. Zhang H, Pan KH, Cohen SN (2003) Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci U S A 100:3251–3256. doi:10.1073/pnas.2627983100 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Genes Dev.Raf. Genes Dev 12:2997–3007PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2015

Authors and Affiliations

  • K. Preeti Gupta
    • 1
  • Pankaj Singh Dholaniya
    • 1
  • Anil Chekuri
    • 1
  • Anand K. Kondapi
    • 1
  1. 1.Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations