Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mitochondrial genomes and exceptional longevity in a Chinese population: the Rugao longevity study

  • 241 Accesses

  • 8 Citations

Abstract

Genetic variants of whole mitochondrial DNA (mtDNA) that predispose to exceptional longevity need to be systematically identified and appraised. Here, we conducted a case-control study with 237 exceptional longevity subjects (aged 95–107) and 444 control subjects (aged 40–69) randomly recruited from a “longevity town”—the city of Rugao in China—to investigate the effects of mtDNA variants on exceptional longevity. We sequenced the entire mtDNA genomes of the 681 subjects using a next-generation platform and employed a complete mtDNA phylogenetic analytical strategy. We identified T3394C as a candidate that counteracts longevity, and we observed a higher load of private nonsynonymous mutations in the COX1 gene predisposing to female longevity. Additionally, for the first time, we identified several variants and new subhaplogroups related to exceptional longevity. Our results provide new clues for genetic mechanisms of longevity and shed light on strategies for evaluating rare mitochondrial variants that underlie complex traits.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Alexe G, Fuku N, Bilal E et al (2007) Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Hum Genet 121:347–356. doi:10.1007/s00439-007-0330-6

  2. Ballard JWO, Rand DM (2005) The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst 36:621–642. doi:10.1146/annurev.ecolsys.36.091704.175513

  3. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

  4. Cai XY, Wang XF, Li SL et al (2009) Association of mitochondrial DNA haplogroups with exceptional longevity in a Chinese population. PLoS ONE 4:e6423. doi:10.1371/journal.pone.0006423

  5. Camus MF, Clancy DJ, Dowling DK (2012) Mitochondria, maternal inheritance, and male aging. Curr Biol CB 22:1717–1721. doi:10.1016/j.cub.2012.07.018

  6. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7:436–448. doi:10.1038/nrg1871

  7. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425. doi:10.1038/nrg2779

  8. Collerton J, Ashok D, Martin-Ruiz C et al (2013) Frailty and mortality are not influenced by mitochondrial DNA haplotypes in the very old. Neurobiol Aging 34(2889):e2881–e2884. doi:10.1016/j.neurobiolaging.2013.04.001

  9. Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:e122. doi:10.1093/nar/gkn502

  10. Dato S, Passarino G, Rose G et al (2004) Association of the mitochondrial DNA haplogroup J with longevity is population specific. Eur J Hum Genet 12:1080–1082. doi:10.1038/sj.ejhg.5201278

  11. De Benedictis G, Rose G, Carrieri G et al (1999) Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 13:1532–1536

  12. Feng J, Zhang J, Liu M et al (2011) Association of mtDNA haplogroup F with healthy longevity in the female Chuang population, China. Exp Gerontol 46:987–993. doi:10.1016/j.exger.2011.09.001

  13. Ferguson M, Mockett RJ, Shen Y, Orr WC, Sohal RS (2005) Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J 390:501–511. doi:10.1042/BJ20042130

  14. Frank SA, Hurst LD (1996) Mitochondria and male disease. Nature 383:224. doi:10.1038/383224a0

  15. Gemmell NJ, Metcalf VJ, Allendorf FW (2004) Mother’s curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol Evol 19:238–244. doi:10.1016/j.tree.2004.02.002

  16. Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145. doi:10.1038/nrg3118

  17. Guan MX (2011) Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion 11:237–245. doi:10.1016/j.mito.2010.10.006

  18. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

  19. Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST (1998) Genetic traces of ancient demography. Proc Natl Acad Sci U S A 95:1961–1967

  20. Innocenti P, Morrow EH, Dowling DK (2011) Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332:845–848. doi:10.1126/science.1201157

  21. Ji F, Sharpley MS, Derbeneva O et al (2012) Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc Natl Acad Sci U S A 109:7391–7396. doi:10.1073/pnas.1202484109

  22. Katzman SM, Strotmeyer ES, Nalls MA et al (2014) Mitochondrial DNA sequence variation associated with peripheral nerve function in the elderly. J Gerontol. doi:10.1093/gerona/glu175

  23. Kong QP, Bandelt HJ, Sun C et al (2006) Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 15:2076–2086. doi:10.1093/hmg/ddl130

  24. Lam ET, Bracci PM, Holly EA et al (2012) Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res 72:686–695. doi:10.1158/0008-5472.CAN-11-1682

  25. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

  26. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

  27. McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

  28. Montoya J, Lopez-Gallardo E, Diez-Sanchez C, Lopez-Perez MJ, Ruiz-Pesini E (2009) 20 years of human mtDNA pathologic point mutations: carefully reading the pathogenicity criteria. Biochim Biophys Acta 1787:476–483. doi:10.1016/j.bbabio.2008.09.003

  29. Namslauer I, Brzezinski P (2009) A mitochondrial DNA mutation linked to colon cancer results in proton leaks in cytochrome c oxidase. Proc Natl Acad Sci U S A 106:3402–3407. doi:10.1073/pnas.0811450106

  30. Niemi AK, Hervonen A, Hurme M, Karhunen PJ, Jylhä M, Majamaa K (2003) Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum Genet 112(1):29–33. doi:10.1007/s00439-002-0843-y

  31. Pakendorf B, Stoneking M (2005) Mitochondrial DNA and human evolution. Annu Rev Genomics Hum Genet 6:165–183. doi:10.1146/annurev.genom.6.080604.162249

  32. Pinos T, Nogales-Gadea G, Ruiz JR et al (2012) Are mitochondrial haplogroups associated with extreme longevity? A study on a Spanish cohort. AGE 34:227–233. doi:10.1007/s11357-011-9209-5

  33. Population Census Office of Rugao (20000 Tabulation on the 2000 population census of Rugao City, Jiangsu Province. p. 8

  34. Raule N, Sevini F, Li S et al (2014) The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 13:401–407. doi:10.1111/acel.12186

  35. Ross OA, McCormack R, Curran MD, Duguid RA, Barnett YA, Rea IM, Middleton D (2001) Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp Gerontol 36:1161–1178. doi:10.1016/S0531-5565(01)00094-8

  36. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226. doi:10.1126/science.1088434

  37. Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19:212–219. doi:10.1016/j.gde.2009.04.010

  38. Seibel P, Di Nunno C, Kukat C et al (2008) Cosegregation of novel mitochondrial 16S rRNA gene mutations with the age-associated T414G variant in human cybrids. Nucleic Acids Res 36:5872–5881. doi:10.1093/nar/gkn592

  39. Sohal RS, Sohal BH, Orr WC (1995) Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radic Bio Med 19:499–504

  40. Soto IC, Fontanesi F, Liu J, Barrientos A (2012) Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochim Biophys Acta 1817:883–897. doi:10.1016/j.bbabio.2011.09.005

  41. Tanaka M, Fuku N, Nishigaki Y et al (2007) Women with mitochondrial haplogroup N9a are protected against metabolic syndrome. Diabetes 56:518–521. doi:10.2337/db06-1105

  42. Tanno Y, Okuizumi K, Tsuji S (1998) mtDNA polymorphisms in Japanese sporadic Alzheimer’s disease. Neurobiol Aging 19:S47–S51

  43. Tennessen JA, Bigham AW, O’Connor TD et al (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:64–69. doi:10.1126/science.1219240

  44. Tranah GJ, Lam ET, Katzman SM et al (2012) Mitochondrial DNA sequence variation is associated with free-living activity energy expenditure in the elderly. BBA-Bioenergetics 1817:1691–1700. doi:10.1016/j.bbabio.2012.05.012

  45. van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30:E386–E394. doi:10.1002/humu.20921

  46. Vaupel JW (2010) Biodemography of human ageing. Nature 464:536–542. doi:10.1038/nature08984

  47. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi:10.1146/annurev.genet.39.110304.095751

  48. Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51:440–450. doi:10.1002/em.20586

  49. Wolff JN, Gemmell NJ (2013) Mitochondria, maternal inheritance, and asymmetric fitness: why males die younger. Bioessays 35:93–99. doi:10.1002/bies.201200141

  50. Zhang M, Zhou X, Li C et al (2010) Mitochondrial haplogroup M9a specific variant ND1 T3394C may have a modifying role in the phenotypic expression of the LHON-associated ND4 G11778A mutation. Mol Genet Metab 101:192–199. doi:10.1016/j.ymgme.2010.07.014

  51. Zheng HX, Yan S, Qin ZD, Wang Y, Tan JZ, Li H, Jin L (2011) Major population expansion of East Asians began before neolithic time: evidence of mtDNA genomes. PLoS ONE 6:e25835. doi:10.1371/journal.pone.0025835

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation (31171216), the National Basic Research Program (2012CB944600), the Ministry of Science and Technology (2011BAI09B00), and the Ministry of Health (201002007) of China.

Conflict of interest

No conflicts of interests were reported.

Author information

Correspondence to Li Jin or Xiaofeng Wang.

Additional information

Lei Li and Hong-Xiang Zheng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 71 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zheng, H., Liu, Z. et al. Mitochondrial genomes and exceptional longevity in a Chinese population: the Rugao longevity study. AGE 37, 14 (2015). https://doi.org/10.1007/s11357-015-9750-8

Download citation

Keywords

  • Mitochondrial genome
  • Exceptional longevity
  • mtDNA variations
  • Private mutations
  • Subhaplogroups