, 36:9700 | Cite as

Are the leukocyte telomere length attrition and telomerase activity alteration potential predictor biomarkers for sporadic TAA in aged individuals?

  • Carmela R. BalistreriEmail author
  • Calogera Pisano
  • Adriana Martorana
  • Oreste F. Triolo
  • Domenico Lio
  • Giuseppina Candore
  • Giovanni Ruvolo


A large variability in occurrence, complications, and age/gender manifestations characterizes individual susceptibility of sporadic thoracic aortic aneurysms (TAA), even in subjects with the same risk factor profiles. The reasons are poorly understood. On the other hand, TAA pathophysiology mechanisms remain unclear than those involved in abdominal aorta aneurysms. However, recent evidence is suggesting a crucial role of biological ageing in inter-individual risk variation of cardiovascular diseases, including sporadic TAA. Biological age rather than chronological age is a better predictor of vascular risk. Relevant assumptions support this concept. In confirming this evidence and our preliminary data, the mean of blood leukocyte telomere length, through use of terminal restriction fragment assay and in blood samples from sporadic TAA patients and controls, was examined. Telomerase activity was also analyzed in two groups. In addition, we verified the weight of genetic inflammatory variants and the major TAA risk factors in telomere/telomerase impairment. Aorta histopathological abnormalities and systemic inflammatory mediators were ultimately correlated with telomere/telomerase impairment. Data obtained demonstrated shorter telomeres and a reduced telomerase activity in TAA patients significantly associated with a genetic inflammatory risk profile, age, gender, smoking, hypertension, a histopathological phenotype, and higher levels of systemic inflammatory mediators than controls. In conclusion, telomere and telomerase activity’s detection might be used as predictor biomarkers of sporadic TAA. Their impairment also suggests a strong role of vascular ageing in sporadic TAA, evocated by both environmental and genetic inflammatory factors.


Sporadic TAA Biological ageing Leukocyte telomere length attrition Telomere activity alteration Predictor TAA biomarkers 


Author’s contribution

Dr Balistreri was involved in conception and study design. Prof Ruvolo and Dr Candore were involved in the support of study materials/patients. Dr Pisano collected and assembled the clinical data of the study population. Dr Balistreri performed the experimental assays with the support in some telomerase activity’s evaluations of Dr Martorana. Dr Balistreri acquired the results obtained and performed their analysis. Drs Balistreri and Pisano were involved in the data interpretation and their translation in clinical suggestions. Dr Balistreri was involved in drafting the manuscript. Dr Balistreri and Prof Ruvolo contributed in the critical revision of the text of manuscript. Dr Balistreri and Prof Ruvolo contributed in the study supervision. Dr Balistreri gave the final approval of the version to be published. All authors participated in the study, and they read and approved the final manuscript.

Competing interests

All authors declare to have no competing interests.


  1. Atturu G, Brouilette S, Samani N, London N, Sayers R, Bown M (2010) Short leukocyte telomere length is associated with abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg 39(5):559–564. doi: 10.1016/j.ejvs.2010.01.013 PubMedCrossRefGoogle Scholar
  2. Bachschmid M, Schildknecht S, Matsui R, Zee R, Haeussler D, Cohen R, Pimental D, Bv L (2013) Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann Med 45(1):17–36. doi: 10.3109/07853890.2011.645498 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Balistreri CR, Candore G, Colonna-Romano G, Lio D, Caruso M, Hoffmann E, Franceschi C, Caruso C (2004) Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA 292(19):2339–2340. doi: 10.1001/jama.292.19.2339 PubMedGoogle Scholar
  4. Balistreri C, Colonna-Romano G, Lio D, Candore G, Caruso C (2009) TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. J Clin Immunol 29(4):406–415. doi: 10.1007/s10875-009-9297-5 PubMedCrossRefGoogle Scholar
  5. Balistreri C, Pisano C, Merlo D, Fattouch K, Caruso M, Incalcaterra E, Colonna-Romano G, Ruvolo G, Candore G (2012) Is the mean blood leukocyte telomere length a predictor for sporadic thoracic aortic aneurysm? Data from a preliminary study. Rejuvenation Res 15(2):170–173. doi: 10.1089/rej.2011.1273 PubMedCrossRefGoogle Scholar
  6. Balistreri C, Accardi G, Buffa S, Bulati M, Martorana A, Candore G, Colonna-Romano G, Lio D, Caruso C (2013a) Centenarian offspring: a model for understanding longevity. Curr Vasc Pharmacol Dec 18. [Epub ahead of print]Google Scholar
  7. Balistreri C, Pisano C, Candore G, Maresi E, Codispoti M, Ruvolo G (2013b) Focus on the unique mechanisms involved in thoracic aortic aneurysm formation in bicuspid aortic valve versus tricuspid aortic valve patients: clinical implications of a pilot study. Eur J Cardiothorac Surg 43(6):e180–e186. doi: 10.1093/ejcts/ezs630 PubMedCrossRefGoogle Scholar
  8. Balistreri C, Pisano C, D’Amico T, Palmeri C, Candore G, Maresi E, Ruvolo G (2013c) The role of inflammation in type A aortic dissection: data of a pilot study. Eur J Inflammation 11:269–278Google Scholar
  9. Balistreri C, Candore G, Accardi G, Colonna-Romano G, Lio D (2013d) NF-κB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies. Immun Ageing 10(1):24. doi: 10.1186/1742-4933-10-24 PubMedCrossRefPubMedCentralGoogle Scholar
  10. Balistreri C, Maresi E, Pisano C, di Maggio F, Vaccarino L, Caruso C, Lio D, Ruvolo G, Candore G (2014a) Identification of three particular morphological phenotypes in sporadic thoracic aortic aneurysm (S-TAA): the phenotype III as S-TAA biomarker in aged individuals. Rejuvenation Res 17(2):192–196. doi: 10.1089/rej.2013.1505 PubMedCrossRefGoogle Scholar
  11. Balistreri CR, Bonfigli AR, Boemi M, Olivieri F, Ceriello A, Genovese S, Franceschi C, SpazzafumoL FP, Candore G, Caruso C, Lio D, Testa R (2014b) Evidences of +896 A/G TLR4 polymorphism as an indicative of prevalence of complications in T2DM patients. Mediat Inflamm 2014:973139. doi: 10.1155/2014/973139 CrossRefGoogle Scholar
  12. Bhupatiraju C, Saini D, Patkar S, Deepak P, Das B, Padma T (2012) Association of shorter telomere length with essential hypertension in Indian population. Am J Hum Biol 24(4):573–578. doi: 10.1002/ajhb.22264 PubMedCrossRefGoogle Scholar
  13. Björck M, Ravn H, Nilsson T, Wanhainen A, Nilsson P (2011) Blood cell telomere length among patients with an isolated popliteal artery aneurysm and those with multiple aneurysm disease. Atherosclerosis 219(2):946–950. doi: 10.1016/j.atherosclerosis.2011.09.034 PubMedCrossRefGoogle Scholar
  14. Blackburn EH (2010) Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl 49(41):7405–7421. doi: 10.1002/anie.201002387 PubMedCrossRefGoogle Scholar
  15. Centers for Disease Control and Prevention; National Center for Injury Prevention Control. Available at: Accessed January, 2014
  16. De Meyer T, Rietzschel E, De Buyzere M, Van Criekinge W, Bekaert S (2011) Telomere length and cardiovascular aging: the means to the ends? Ageing Res Rev 10(2):297–303. doi: 10.1016/j.arr.2010.11.001 PubMedCrossRefGoogle Scholar
  17. Dimitroulis D, Katsargyris A, Klonaris C, Avgerinos E, Fragou-Plemenou M, Kouraklis G, Liapis CD (2011) Telomerase expression on aortic wall endothelial cells is attenuated in abdominal aortic aneurysms compared to healthy nonaneurysmal aortas. J Vasc Surg 54(6):1778–1783. doi: 10.1016/j.jvs.2011.06.079 PubMedCrossRefGoogle Scholar
  18. Eissler R, Schmaderer C, Rusai K, Kühne L, Sollinger D, Lahmer T, Witzke O, Lutz J, Heemann U, Baumann M (2011) Hypertension augments cardiac Toll-like receptor 4 expression and activity. Hypertens Res 34(5):551–558. doi: 10.1038/hr.2010.270 PubMedCrossRefGoogle Scholar
  19. Elefteriades J, Farkas E (2010) Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol 55(9):841–857. doi: 10.1016/j.jacc.2009.08.084 PubMedCrossRefGoogle Scholar
  20. El-Hamamsy I, Yacoub M (2009) Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 6(12):771–786. doi: 10.1038/nrcardio.2009.191 PubMedCrossRefGoogle Scholar
  21. Epel E, Merkin S, Cawthon R, Blackburn E, Adler N, Pletcher M, Seeman T (2008) The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY) 1(1):81–88Google Scholar
  22. Findeisen H, Gizard F, Zhao Y, Cohn D, Heywood E, Jones K, Lovett D, Howatt D, Daugherty A, Bruemmer D (2011) Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol 31(2):253–260. doi: 10.1161/ATVBAHA.110.218545 PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fitzpatrick A, Kronmal R, Kimura M, Gardner J, Psaty B, Jenny N, Tracy R, Hardikar S, Aviv A (2011) Leukocyte telomere length and mortality in the cardiovascular health study. J Gerontol A Biol Sci Med Sci 66(4):421–429. doi: 10.1093/gerona/glq224 PubMedCrossRefGoogle Scholar
  24. Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc 4(8):444–454. doi: 10.1038/ncpcardio0938 CrossRefGoogle Scholar
  25. Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A, Pawelec G (2010) Aging, frailty and age-related diseases. Biogerontology 11(5):547–563. doi: 10.1007/s10522-010-9287-2 PubMedCrossRefGoogle Scholar
  26. Fyhrquist F, Silventoinen K, Saijonmaa O, Kontula K, Devereux RB, de Faire U, Os I, Dahlöf B (2011) Telomere length and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. J Hum Hypertens 25(12):711–718. doi: 10.1038/jhh.2011.57 PubMedCrossRefGoogle Scholar
  27. Fyhrquist F, Saijonmaa O, Strandberg T (2013) The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10(5):274–283PubMedCrossRefGoogle Scholar
  28. Goldschmidt-Clermont P, Dong C, Seo D, Velazquez O (2012) Atherosclerosis, inflammation, genetics, and stem cells: 2012 update. CurrAtheroscler Rep 14(3):201–210. doi: 10.1007/s11883-012-0244-1 Google Scholar
  29. González-Ramos M, Calleros L, López-Ongil S, Raoch V, Griera M, Rodríguez-Puyol M, de Frutos S, Rodríguez-Puyol D (2013) HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation. Int J Biochem Cell Biol 45(2):232–242. doi: 10.1016/j.biocel.2012.10.001 PubMedCrossRefGoogle Scholar
  30. Hofmann U, Ertl G, Frantz S (2011) Toll-like receptors as potential therapeutic targets in cardiac dysfunction. Expert Opin Ther Targets 15(6):753–765. doi: 10.1517/14728222.2011.566560 PubMedCrossRefGoogle Scholar
  31. Huusko T, Santaniemi M, Kakko S, Taskinen P, Ukkola O, Kesäniemi Y, Savolainen M, Salonurmi T (2012) Long telomeres in blood leukocytes are associated with a high risk of ascending aortic aneurysm. PLoS One 7(11):e50828. doi: 10.1371/journal.pone.0050828 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Huzen J, de Boer R, van Veldhuisen D, van Gilst W, van der Harst P (2010) The emerging role of telomere biology in cardiovascular disease. Front Biosci (Landmark Ed) 15:35–45CrossRefGoogle Scholar
  33. Huzen J, Wong L, van Veldhuisen D, Samani N, Zwinderman A, Codd V, Cawthon R, Benus G, van der Horst I, Navis G, Bakker S, Gansevoort R, de Jong P, Hillege H, van Gilst W, de Boer R, van der Harst P (2014) Telomere length loss due to smoking and metabolic traits. J Intern Med 275(2):155–163. doi: 10.1111/joim.12149 PubMedCrossRefGoogle Scholar
  34. Incalcaterra E, Accardi G, Balistreri C, Caimi G, Candore G, Caruso M, Caruso C (2013) Pro-inflammatory genetic markers of atherosclerosis. Curr Atheroscler Rep 15(6):329. doi: 10.1007/s11883-013-0329-5 PubMedCrossRefGoogle Scholar
  35. Ince H, Nienaber C (2007) Etiology, pathogenesis and management of thoracic aortic aneurysm. Nat Clin Pract Cardiovasc Med 4(8):418–427. doi: 10.1038/ncpcardio0937 PubMedCrossRefGoogle Scholar
  36. Ionita MG, Arslan F, de Kleijn DP, Pasterkamp G (2010) Endogenous inflammatory molecules engage Toll-like receptors in cardiovascular disease. J Innate Immun 2(4):307–315. doi: 10.1159/000314270 PubMedCrossRefGoogle Scholar
  37. Kim N, Wu F (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 25(13):2595–2597PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kuivaniemi H, Platsoucas CD, Tilson MD 3rd (2008) Aortic aneurysms: an immune disease with a strong genetic component. Circulation 117(2):242–252. doi: 10.1161/CIRCULATIONAHA.107.690982 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Laurent S (2012) Defining vascular aging and cardiovascular risk. J Hypertens 30(Suppl):S3–S8. doi: 10.1097/HJH.0b013e328353e501 PubMedCrossRefGoogle Scholar
  40. Li H, Xu H, Liu S (2011) Toll-like receptors 4 induces expression of matrix metalloproteinase-9 in human aortic smooth muscle cells. Mol Biol Rep 38(2):1419–1423. doi: 10.1007/s11033-010-0246-4 PubMedCrossRefGoogle Scholar
  41. Mainous A, Diaz V (2010) Telomere length as a risk marker for cardiovascular disease: the next big thing? Expert Rev Mol Diagn 10(8):969–971. doi: 10.1586/erm.10.69 PubMedCrossRefGoogle Scholar
  42. Minamino T, Komuro I (2008) Vascular aging: insights from studies on cellular senescence, stem cell aging, and progeroid syndromes. Nat Clin Pract Cardiovasc Med 5(10):637–648. doi: 10.1038/ncpcardio1324 PubMedCrossRefGoogle Scholar
  43. Navi A, Patel H, Shaw S, Baker D, Tsui J (2013) Therapeutic role of toll-like receptor modification in cardiovascular dysfunction. Vasc Pharmacol 58(3):231–239. doi: 10.1016/j.vph.2012.10.001 CrossRefGoogle Scholar
  44. Nilsson P (2012) Impact of vascular aging on cardiovascular disease: the role of telomere biology. J Hypertens 30(Suppl):S9–S12. doi: 10.1097/HJH.0b013e328353e512 PubMedCrossRefGoogle Scholar
  45. O’Rourke M, Adji A, Namasivayam M, Mok J (2011) Arterial aging: a review of the pathophysiology and potential for pharmacological intervention. Drugs Aging 28(10):779–795. doi: 10.2165/11592730-000000000-00000 PubMedCrossRefGoogle Scholar
  46. Ouzounian M, Lee D, Gramolini A, Emili A, Fukuoka M, Liu P (2007) Predict, prevent and personalize: genomic and proteomic approaches to cardiovascular medicine. Can J Cardiol 23 (Suppl A):28A–33A. doi: 10.1016/S0828-282X(07)71003-6 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Phan H, Alpert J, Fain M (2008) Frailty, inflammation, and cardiovascular disease: evidence of a connection. Am J Geriatr Cardiol 17(2):101–107, Review. PubMed PMID: 1832695PubMedGoogle Scholar
  48. Pisano C, Maresi E, Balistreri C, Candore G, Merlo D, Fattouch K, Bianco G, Ruvolo G (2012a) Histological and genetic studies in patients with bicuspid aortic valve and ascending aorta complications. Interact Cardiovasc Thorac Surg 14(3):300–306. doi: 10.1093/icvts/ivr114 PubMedCrossRefPubMedCentralGoogle Scholar
  49. Pisano C, Maresi E, Merlo D, Balistreri C, Candore G, Caruso M, Codispoti M, Ruvolo G (2012b) A particular phenotype of ascending aorta aneurysms as precursor of type A aortic dissection. Interact Cardiovasc Thorac Surg 15(5):840–846. doi: 10.1093/icvts/ivs347 PubMedCrossRefPubMedCentralGoogle Scholar
  50. Pryshchep O, Ma-Krupa W, Younge B, Goronzy J, Weyand CM (2008) Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 118(12):1276–1284. doi: 10.1161/CIRCULATIONAHA.108.789172 PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ruvolo G, Pisano C, Maresi E, Candore G, Palmeri C, Lio D, Balistreri C (2014) Can the TLR-4 mediated signaling pathway be considered “a key inflammatory promoter of sporadic TAA”?. Mediators Inflamm, volume 2014, Article ID 349476, 14 pages 10.1155/2014/349476
  52. Saliques S, Zeller M, Lorin J, Lorgis L, Teyssier JR, Cottin Y, Rochette L, Vergely C (2010) Telomere length and cardiovascular disease. Arch Cardiovasc Dis 103(8–9):454–459. doi: 10.1016/j.acvd.2010.08.002 PubMedCrossRefGoogle Scholar
  53. Sikora E, Bielak-Zmijewska A, Mosieniak G (2013)Cellular senescence in ageing, age-related disease and longevity. CurrVascPharmacol Dec18. [Epubahead of print]Google Scholar
  54. Song Y, Shen H, Schenten D, Shan P, Lee P, Goldstein D (2012) Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 32(1):103–109. doi: 10.1161/ATVBAHA.111.236349 PubMedCrossRefPubMedCentralGoogle Scholar
  55. Wadley A, van Veldhuijzen Zanten J, Aldred S (2013) The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: the vascular health triad. Age (Dordr) 35(3):705–718. doi: 10.1007/s11357-012-9402-1 CrossRefGoogle Scholar
  56. Wilson W, Herbert K, Mistry Y, Stevens S, Patel H, Hastings R, Thompson M, Williams B (2008) Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J 29(21):2689–2694. doi: 10.1093/eurheartj/ehn386 PubMedCrossRefGoogle Scholar
  57. Yan J, Yang Y, Chen C, Peng J, Ding H, Wen Wang D (2011) Short leukocyte telomere length is associated with aortic dissection. Intern Med 50(23):2871–2875. doi: 10.2169/internalmedicine.50.5958 PubMedCrossRefGoogle Scholar
  58. Yang Z, Huang X, Jiang H, Zhang Y, Liu H, Qin C, Eisner G, Jose PA, Rudolph L, Ju Z (2009) Short telomeres and prognosis of hypertension in a Chinese population. Hypertension 53(4):639–645. doi: 10.1161/HYPERTENSIONAHA.108.123752 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© American Aging Association 2014

Authors and Affiliations

  • Carmela R. Balistreri
    • 1
    Email author
  • Calogera Pisano
    • 2
  • Adriana Martorana
    • 1
  • Oreste F. Triolo
    • 2
  • Domenico Lio
    • 1
  • Giuseppina Candore
    • 1
  • Giovanni Ruvolo
    • 2
  1. 1.Department of Pathobiology and Medical and Forensic BiotechnologiesUniversity of PalermoPalermoItaly
  2. 2.Unit of Cardiac Surgery, Department of Surgery and OncologyUniversity of PalermoPalermoItaly

Personalised recommendations