, 36:9661 | Cite as

Total arterial compliance estimated by a novel method and all-cause mortality in the elderly: the PROTEGER study

  • Theodore G. PapaioannouEmail author
  • Athanase D. Protogerou
  • Nikolaos Stergiopulos
  • Orestis Vardoulis
  • Christodoulos Stefanadis
  • Michel Safar
  • Jacques Blacher


Aortic stiffness, assessed by carotid-to-femoral pulse wave velocity (PWV), often fails to predict cardiovascular (CV) risk and mortality in the very elderly. This may be due to the non-linear association between PWV and compliance or to blood pressure decrease in the frailest subjects. Total arterial compliance (C T) is the most relevant arterial property regarding CV function, compared to local or regional arterial stiffness. A new method for C T estimation, based on PWV, was recently proposed. We aimed to investigate the value of C T to predict all-cause mortality at the elderly. PWV was estimated in 279 elderly subjects (85.5 ± 7.0 years) who were followed up for a mean period of 12.8 ± 6.3 months. C T was estimated by the formula C T = k × PWV−2; coefficient k is body-size dependent based on previous in silico simulations. Herein, k was adjusted for body mass index (BMI) with a 10 % change in BMI corresponding to almost 11 % change in k. For a reference BMI = 26.2 kg/m2, k = 37. Survivors (n = 185) and non-survivors (n = 94) had similar PWV (14.2 ± 3.6 versus 14.9 ± 3.8 m/s, respectively; p = 0.139). In contrast, non-survivors had significantly lower C T than survivors (0.198 ± 0.128 versus 0.221 ± 0.1 mL/mmHg; p = 0.018). C T was a significant predictor of mortality (p = 0.022, odds ratio = 0.326), while PWV was not (p = 0.202), even after adjustment for gender, mean pressure and heart rate. Age was an independent determinant of C T (p = 0.016), but not of PWV. C T, estimated by a novel method, can predict all-cause mortality in the elderly. C T may be more sensitive arterial biomarker than PWV regarding CV risk assessment.


Arterial stiffness Pulse wave velocity Distensibility Elasticity Aorta Cardiovascular risk 


  1. Androutsos G, Karamanou M, Stefanadis C (2012) William Harvey (1578-1657): discoverer of blood circulation. Hell J Cardiol 53:6–9Google Scholar
  2. Asmar R, Benetos A, Topouchian J et al (1995) Assessment of arterial distensibility by automatic pulse wave velocity measurement: validation and clinical application studies. Hypertension 26:485–490PubMedCrossRefGoogle Scholar
  3. Blacher J, Safar ME, Pannier B et al (2002) Prognostic significance of arterial stiffness measurements in end-stage renal disease patients. Curr Opin Nephrol Hypertens 11:629–634PubMedCrossRefGoogle Scholar
  4. Bramwell JC, Hill AV (1922) The velocity of the pulse wave in man. Proc R Soc Lond B 93:298–306CrossRefGoogle Scholar
  5. Cruickshank K, Riste L, Anderson SG et al (2002) Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 106:2085–2090PubMedCrossRefGoogle Scholar
  6. Dart AM, Gatzka CD, Kingwell BA et al (2006) Brachial blood pressure but not carotid arterial waveforms predict cardiovascular events in elderly female hypertensives. Hypertension 47:785–790PubMedCrossRefGoogle Scholar
  7. Greenland P, Alpert JS, Beller GA et al (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 122:e584–e636PubMedCrossRefGoogle Scholar
  8. Karamanou M, Androutsos G (2010) Completing the puzzle of blood circulation: the discovery of capillaries. Ital J Anat Embryol 115:175–179PubMedGoogle Scholar
  9. Kelly RP, Tunin R, Kass DA (1992) Effect of reduced aortic compliance on cardiac efficiency and contractile function of in situ canine left ventricle. Circ Res 71:490–502PubMedCrossRefGoogle Scholar
  10. Kolh P, D'Orio V, Lambermont B et al (2000) Increased aortic compliance maintains left ventricular performance at lower energetic cost. Eur J Cardiothorac Surg 17:272–278PubMedCrossRefGoogle Scholar
  11. Laurent S, Boutouyrie P, Asmar R et al (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241PubMedCrossRefGoogle Scholar
  12. Li Y, Khir AW (2011) Experimental validation of non-invasive and fluid density independent methods for the determination of local wave speed and arrival time of reflected wave. J Biomech 44:1393–1399PubMedCrossRefGoogle Scholar
  13. Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 25:1105–1187PubMedCrossRefGoogle Scholar
  14. Matsushima Y, Kawano H, Koide Y et al (2004) Relationship of carotid intima-media thickness, pulse wave velocity, and ankle brachial index to the severity of coronary artery atherosclerosis. Clin Cardiol 27:629–634PubMedCrossRefGoogle Scholar
  15. Mattace-Raso FU, van der Cammen TJ, Hofman A et al (2006) Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113:657–663PubMedCrossRefGoogle Scholar
  16. McVeigh GE, Bank AJ, Cohn JN (2007) Arterial compliance. In: Willerson JT, Cohn JN, Wellens HJJ, Holmes DR (eds) Cardiovascular medicine. Springer-Verlag, London, pp 1811–1831CrossRefGoogle Scholar
  17. Meaume S, Benetos A, Henry OF et al (2001) Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol 21:2046–2050PubMedCrossRefGoogle Scholar
  18. Megnien JL, Simon A, Denarie N et al (1998) Aortic stiffening does not predict coronary and extracoronary atherosclerosis in asymptomatic men at risk for cardiovascular disease. Am J Hypertens 11:293–301PubMedCrossRefGoogle Scholar
  19. Mitchell GF, Hwang SJ, Vasan RS et al (2010) Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505–511PubMedCentralPubMedCrossRefGoogle Scholar
  20. Mottram PM, Haluska BA, Leano R et al (2005) Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 91:1551–1556PubMedCentralPubMedCrossRefGoogle Scholar
  21. Papaioannou TG, Mathioulakis DS, Tsangaris SG (2003) Simulation of systolic and diastolic left ventricular dysfunction in a mock circulation: the effect of arterial compliance. J Med Eng Technol 27:85–89PubMedCrossRefGoogle Scholar
  22. Protogerou AD, Safar ME, Iaria P et al (2007) Diastolic blood pressure and mortality in the elderly with cardiovascular disease. Hypertension 50:172–180PubMedCrossRefGoogle Scholar
  23. Reymond P, Bohraus Y, Perren F et al (2011) Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 301:H1173–H1182PubMedCrossRefGoogle Scholar
  24. Reymond P, Merenda F, Perren F et al (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222PubMedCrossRefGoogle Scholar
  25. Segers P, Verdonck P, Deryck Y et al (1999) Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection intensity. Ann Biomed Eng 27:480–485PubMedCrossRefGoogle Scholar
  26. Spencer MP, Dennison AB (1963) Pulsatile blood flow in the vascular system. In: Hamilton WF (ed) Handbook of physiology, vol 2. American Physiology Society, Washington, DC, p 842Google Scholar
  27. Stefanadis C, Stratos C, Boudoulas H et al (1990) Distensibility of the ascending aorta: comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease. Eur Heart J 11:990–996PubMedGoogle Scholar
  28. Stergiopulos N, Meister JJ, Westerhof N (1995) Evaluation of methods for estimation of total arterial compliance. Am J Physiol 268:H1540–H1548PubMedGoogle Scholar
  29. Stergiopulos N, Segers P, Westerhof N (1999) Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol 276:H424–H428PubMedGoogle Scholar
  30. Taviani V, Hickson SS, Hardy CJ et al (2011) Age-related changes of regional pulse wave velocity in the descending aorta using Fourier velocity encoded M-Mode. Magn Reson Med 65:261–268PubMedCrossRefGoogle Scholar
  31. Van Bortel LM (2006) Is arterial stiffness ready for daily clinical practice? J Hypertens 24:281–283PubMedCrossRefGoogle Scholar
  32. Van Bortel LM, Laurent S, Boutouyrie P et al (2012) Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 30:445–448PubMedCrossRefGoogle Scholar
  33. Vardoulis O, Papaioannou TG, Stergiopulos N (2012) On the estimation of total arterial compliance from aortic pulse wave velocity. Ann Biomed Eng 40:2619–2626PubMedCrossRefGoogle Scholar
  34. Verwoert GC, Elias-Smale SE, Rizopoulos D et al (2012) Does aortic stiffness improve the prediction of coronary heart disease in elderly? The Rotterdam Study. J Hum Hypertens 26:28–34PubMedCrossRefGoogle Scholar
  35. Vlachopoulos C, O'Rourke M (2000) Genesis of the normal and abnormal arterial pulse. Curr Probl Cardiol 25:303–367PubMedCrossRefGoogle Scholar
  36. Westerhof N, Stergiopulos N, Noble MIM (2010) Snapshots of hemodynamics: an aid for clinical research and graduate education. Springer, New YorkCrossRefGoogle Scholar
  37. Zhang Y, Agnoletti D, Iaria P et al (2012) Gender difference in cardiovascular risk factors in the elderly with cardiovascular disease in the last stage of lifespan: the PROTEGER study. Int J Cardiol 155:144–148PubMedCrossRefGoogle Scholar
  38. Zhang Y, Safar ME, Iaria P et al (2010a) Prevalence and prognosis of left ventricular diastolic dysfunction in the elderly: the PROTEGER Study. Am Heart J 160:471–478PubMedCrossRefGoogle Scholar
  39. Zhang Y, Safar ME, Iaria P et al (2010b) Cardiac and arterial calcifications and all-cause mortality in the elderly: the PROTEGER Study. Atherosclerosis 213:622–626PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2014

Authors and Affiliations

  • Theodore G. Papaioannou
    • 1
    • 2
    Email author
  • Athanase D. Protogerou
    • 3
  • Nikolaos Stergiopulos
    • 2
  • Orestis Vardoulis
    • 2
  • Christodoulos Stefanadis
    • 1
  • Michel Safar
    • 4
  • Jacques Blacher
    • 4
  1. 1.Biomedical Engineering Unit, First Department of Cardiology, Hippokration Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Hypertension Center and Cardiovascular Research Laboratory, First Department of Propaedeutic and Internal Medicine, Laikon Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  4. 4.AP-HP, Diagnosis and Therapeutic Center, Hôtel-DieuParis Descartes UniversityParisFrance

Personalised recommendations