AGE

, 36:9633 | Cite as

Molecular composition of the alveolar lining fluid in the aging lung

  • Juan I. Moliva
  • Murugesan V. S. Rajaram
  • Sabeen Sidiki
  • Smitha J. Sasindran
  • Evelyn Guirado
  • Xueliang Jeff Pan
  • Shu-Hua Wang
  • Patrick RossJr.
  • William P. Lafuse
  • Larry S. Schlesinger
  • Joanne Turner
  • Jordi B. Torrelles
Article

Abstract

As we age, there is an increased risk for the development of pulmonary diseases, including infections, but few studies have considered changes in lung surfactant and components of the innate immune system as contributing factors to the increased susceptibility of the elderly to succumb to infections. We and others have demonstrated that human alveolar lining fluid (ALF) components, such as surfactant protein (SP)-A, SP-D, complement protein C3, and alveolar hydrolases, play a significant innate immune role in controlling microbial infections. However, there is a lack of information regarding the effect of increasing age on the level and function of ALF components in the lung. Here we addressed this gap in knowledge by determining the levels of ALF components in the aging lung that are important in controlling infection. Our findings demonstrate that pro-inflammatory cytokines, surfactant proteins and lipids, and complement components are significantly altered in the aged lung in both mice and humans. Further, we show that the aging lung is a relatively oxidized environment. Our study provides new information on how the pulmonary environment in old age can potentially modify mucosal immune responses, thereby impacting pulmonary infections and other pulmonary diseases in the elderly population.

Keywords

Inflammation Aging Alveolar lining fluid Surfactant Complement 

References

  1. Arcos J, Sasindran SJ, Fujiwara N, Turner J, Schlesinger LS, Torrelles JB (2011) Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J Immunol 187:372–381PubMedCrossRefGoogle Scholar
  2. Baylis D, Bartlett D, Patel H, Roberts H (2013) Understanding how we age: insights into inflammaging. Longev Healthspan 2:1–8CrossRefGoogle Scholar
  3. Beharka AA, Gaynor CD, Kang BK, Voelker DR, McCormack FX, Schlesinger LS (2002) Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol 169:3565–3573PubMedCrossRefGoogle Scholar
  4. Betsuyaku T, Nishimura M, Takeyabu K, Tanino M, Venge P, Xu S et al (1999) Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 159:1985–1991PubMedCrossRefGoogle Scholar
  5. Betsuyaku T, Kuroki Y, Nagai K, Nasuhara Y, Nishimura M (2004) Effects of ageing and smoking on SP-A and SP-D levels in bronchoalveolar lavage fluid. Eur Respir J 24:964–970PubMedCrossRefGoogle Scholar
  6. Bolger MS, Ross DS, Jiang H, Frank MM, Ghio AJ, Schwartz DA et al (2007) Complement levels and activity in the normal and LPS-injured lung. Am J Physiol Lung Cell Mol Physiol 292:L748–L759PubMedCrossRefGoogle Scholar
  7. Bridges JP, Davis HW, Damodarasamy M, Kuroki Y, Howles G, Hui DY et al (2000) Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem 275:38848–38855PubMedCrossRefGoogle Scholar
  8. Burton DGA (2009) Cellular senescence, ageing and disease. Age (Dordr) 31:1–9CrossRefGoogle Scholar
  9. Busse PJ, Mathur SK (2010) Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol 126:690–699PubMedCrossRefPubMedCentralGoogle Scholar
  10. Carlson TK, Brooks M, Meyer D, Henning L, Murugesan V et al (2010) Pulmonary innnate immunity: soluble and cellular host defenses of the lung. In: Marsh C, Tridandapani S, Piper M (eds) Regulation of innate immune function. Transworld Research Network, Kerala, pp 165–211Google Scholar
  11. Clay CD, Soni S, Gunn JS, Schlesinger LS (2008) Evasion of complement-mediated lysis and complement C3 deposition are regulated by Francisella tularensis lipopolysaccharide O antigen. J Immunol 181:5568–5578PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cole FS, Matthews WJ Jr, Rossing TH, Gash DJ, Lichtenberg NA, Pennington JE (1983) Complement biosynthesis by human bronchoalveolar macrophages. Clin Immunol Immunopathol 27:153–159PubMedCrossRefGoogle Scholar
  13. Crowther JE, Kutala VK, Kuppusamy P, Ferguson JS, Beharka AA, Zweier JL et al (2004) Pulmonary surfactant protein a inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. J Immunol 172:6866–6874PubMedCrossRefGoogle Scholar
  14. Cruz-Hervert LP, Garcia-Garcia L, Ferreyra-Reyes L, Bobadilla-del-Valle M, Cano-Arellano B, Canizales-Quintero S et al (2012) Tuberculosis in ageing: high rates, complex diagnosis and poor clinical outcomes. Age Ageing 41:488–495PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G et al (2005) Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24:55–99PubMedCrossRefGoogle Scholar
  16. de Vries AC, Schram AW, Tager JM, Batenburg JJ, van Golde LM (1985) A specific acid alpha-glucosidase in lamellar bodies of the human lung. Biochim Biophys Acta 837:230–238PubMedCrossRefGoogle Scholar
  17. DiAugustine RP (1974) Lung concentric laminar organelle. Hydrolase activity and compositional analysis. J Biol Chem 249:584–593PubMedGoogle Scholar
  18. Doria G, D’Agostaro G, Poretti A (1978) Age-dependent variations of antibody avidity. Immunology 35:601–611PubMedPubMedCentralGoogle Scholar
  19. Dyer C (2012) The interaction of ageing and lung disease. Chron Respir Dis 9:63–67PubMedCrossRefGoogle Scholar
  20. Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L (2004) Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med 200:1613–1622PubMedCrossRefPubMedCentralGoogle Scholar
  21. Edelson JD, Shannon JM, Mason RJ (1988) Alkaline phosphatase: a marker of alveolar type II cell differentiation. Am Rev Respir Dis 138:1268–1275PubMedCrossRefGoogle Scholar
  22. Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS (1999) Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol 163:312–321PubMedGoogle Scholar
  23. Ferguson JS, Weis JJ, Martin JL, Schlesinger LS (2004) Complement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect Immun 72:2564–2573PubMedCrossRefPubMedCentralGoogle Scholar
  24. Ferguson JS, Martin JL, Azad AK, McCarthy TR, Kang PB, Voelker DR et al (2006) Surfactant protein D increases fusion of Mycobacterium tuberculosis-containing phagosomes with lysosomes in human macrophages. Infect Immun 74:7005–7009PubMedCrossRefPubMedCentralGoogle Scholar
  25. Figueroa JE, Densen P (1991) Infectious diseases associated with complement deficiencies. Clin Microbiol Rev 4:359–395PubMedPubMedCentralGoogle Scholar
  26. Fragoso CAV, Lee PJ (2012) The aging lung. J Gerontol 67A:233–235CrossRefGoogle Scholar
  27. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  28. Gaynor CD, McCormack FX, Voelker DR, McGowan SE, Schlesinger LS (1995) Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol 155:5343–5351PubMedGoogle Scholar
  29. Geunes-Boyer S, Oliver TN, Janbon G, Lodge JK, Heitman J, Perfect JR et al (2009) Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect Immun 77:2783–2794PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gilder H, Haschemeyer RH, Fairclough GF Jr, Mynarcik DC (1981) Isolation and characterization of lamellar body material from rat lung homogenates by continuous linear sucrose gradients. J Lipid Res 22:1277–1285PubMedGoogle Scholar
  31. Gupta GS, Gupta A, Gupta RK (2012) Animal lectins: form, functions and clinical applications. Springer, LondonGoogle Scholar
  32. Hawgood S, Poulain FR (2001) The pulmonary collectins and surfactant metabolism. Annu Rev Physiol 63:495–519PubMedCrossRefGoogle Scholar
  33. Hayakawa H, Giridhar G, Myrvik QN, Kucera L (1992) Pulmonary surfactant phospholipids modulate priming of rabbit alveolar macrophages for oxidative responses. J Leukoc Biol 51:379PubMedGoogle Scholar
  34. Henning LN, Azad AK, Parsa KV, Crowther JE, Tridandapani S, Schlesinger LS (2008) Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol 180:7847–7858PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ho E, Karimi GK, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hook GE (1978) Extracellular hydrolases of the lung. Biochemistry 17:520–528PubMedCrossRefGoogle Scholar
  37. Hook GE, Gilmore LB (1982) Hydrolases of pulmonary lysosomes and lamellar bodies. J Biol Chem 257:9211–9220PubMedGoogle Scholar
  38. Ito K, Barnes PJ (2009) COPD as a disease of accelerated lung aging. Chest 135:173–180PubMedCrossRefGoogle Scholar
  39. Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E et al (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202:987–999PubMedCrossRefPubMedCentralGoogle Scholar
  40. King RJ (1982) Pulmonary surfactant. J Appl Physiol 53:1–8PubMedCrossRefGoogle Scholar
  41. Laskin DL, Pendino KJ (1995) Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35:655–677PubMedCrossRefGoogle Scholar
  42. Lusuardi M, Capelli A, Carli S, Tacconi MT, Salmona M, Donner CF (1992) Role of surfactant in chronic obstructive pulmonary disease: therapeutic implications. Respiration 59(Suppl 1):28–32PubMedCrossRefGoogle Scholar
  43. Mason RJ (2006) Biology of alveolar type II cells. Respirology 11(Suppl):S12–S15PubMedCrossRefGoogle Scholar
  44. Mauderly JL, Hahn FF (1982) The effects of age on lung function and structure of adult animals. Adv Vet Sci Comp Med 26:35–77PubMedGoogle Scholar
  45. Meyer KC, Ershler W, Rosenthal NS, Lu XG, Peterson K (1996) Immune dysregulation in the aging human lung. Am J Respir Crit Care Med 153:1072–1079PubMedCrossRefGoogle Scholar
  46. Mold C (1999) Role of complement in host defense against bacterial infection. Microbes Infect 1:633–638PubMedCrossRefGoogle Scholar
  47. Nguyen HA, Rajaram MV, Meyer DA, Schlesinger LS (2012) Pulmonary surfactant protein A and surfactant lipids upregulate IRAK-M, a negative regulator of TLR-mediated inflammation in human macrophages. Am J Physiol Lung Cell Mol Physiol 303:L608–L616PubMedCrossRefPubMedCentralGoogle Scholar
  48. Notter RH (2000) Lung surfactants: basic science and clinical applications. Marcel Dekker, New York, pp 1–444Google Scholar
  49. Notter RH, Tabak SA, Mavis RD (1980) Surface properties of binary mixtures of some pulmonary surfactant components. J Lipid Res 21:10–22PubMedGoogle Scholar
  50. Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, Mostashari F (2007) Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City. PLoS Med 4:e247PubMedCrossRefPubMedCentralGoogle Scholar
  51. Postle AD (2008) Phospholipid profiling. In: Griffiths W (ed) Metabolomics, metabonomics, and metabolite profiling. The Royal Society of Chemistry, Cambridge, pp 116–133Google Scholar
  52. Rebello CM, Jobe AH, Eisele JW, Ikegami M (1996) Alveolar and tissue surfactant pool sizes in humans. Am J Respir Crit Care Med 154:625–628PubMedCrossRefGoogle Scholar
  53. Reid KB, Clark H, Palaniyar N (2005) Surfactant and lung inflammation. Thorax 60:620–622PubMedCrossRefPubMedCentralGoogle Scholar
  54. Retini C, Kozel TR, Pietrella D, Monari C, Bistoni F, Vecchiarelli A (2001) Interdependency of interleukin-10 and interleukin-12 in regulation of T-cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect Immun 69:6064–6073PubMedCrossRefPubMedCentralGoogle Scholar
  55. Reynolds HY (1987) Lung inflammation: normal host defense or a complication of some diseases? Annu Rev Med 38:295–323PubMedCrossRefGoogle Scholar
  56. Robertson J, Caldwell JR, Castle JR, Waldman RH (1976) Evidence for the presence of components of the alternative (properdin) pathway of complement activation in respiratory secretions. J Immunol 117:900–903PubMedGoogle Scholar
  57. Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G (2010) Oxidative stress and aging. J Nephrol 23(Suppl 15):S29–S36PubMedGoogle Scholar
  58. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181PubMedCrossRefGoogle Scholar
  59. Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144:2771–2780PubMedGoogle Scholar
  60. Schunemann HJ, Muti P, Freudenheim JL, Armstrong D, Browne R, Klocke RA et al (1997) Oxidative stress and lung function. Am J Epidemiol 146:939–948PubMedCrossRefGoogle Scholar
  61. Strunk RC, Eidlen DM, Mason RJ (1988) Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J Clin Invest 81:1419–1426PubMedCrossRefPubMedCentralGoogle Scholar
  62. Taffet GE, Donohue JF, Altman PR (2014) Considerations for managing chronic obstructive pulmonary disease in the elderly. Clin Interv Aging 9:23–30PubMedPubMedCentralGoogle Scholar
  63. Tedesco F (2008) Inherited complement deficiencies and bacterial infections. Vaccine 26(Suppl 8):I3–I8PubMedCrossRefGoogle Scholar
  64. Tonks A, Morris RH, Price AJ, Thomas AW, Jones KP, Jackson SK (2001) Dipalmitoylphosphatidylcholine modulates inflammatory functions of monocytic cells independently of mitogen activated protein kinases. Clin Exp Immunol 124:86–94PubMedCrossRefPubMedCentralGoogle Scholar
  65. Torrelles JB (2012) Broadening our view about the role of Mycobacterium tuberculosis cell envelope components during infection: a battle for survival. In: Cardona PJ (ed) Understanding tuberculosis—analyzing the origin of Mycobacterium tuberculosis pathogenicity. Intech, Rijeka, pp 1–46Google Scholar
  66. Umstead TM, Freeman WM, Chinchilli VM, Phelps DS (2009) Age-related changes in the expression and oxidation of bronchoalveolar lavage proteins in the rat. Am J Physiol Lung Cell Mol Physiol 296:L14–L29PubMedCrossRefGoogle Scholar
  67. van Golde LM (1985) Synthesis of surfactant lipids in the adult lung. Annu Rev Physiol 47:765–774PubMedCrossRefGoogle Scholar
  68. Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408:90–108PubMedCrossRefGoogle Scholar
  69. Walti H, Polla BS, Bachelet M (1997) Modified natural porcine surfactant inhibits superoxide anions and proinflammatory mediators released by resting and stimulated human monocytes. Pediatr Res 41:114–119PubMedCrossRefGoogle Scholar
  70. Wang SH, Carruthers B, Turner J (2012) The influence of increasing age on susceptibility of the elderly to tuberculosis. Open Longetivity Science 6:73–82CrossRefGoogle Scholar
  71. Watford WT, Wright JR, Hester CG, Jiang H, Frank MM (2001) Surfactant protein A regulates complement activation. J Immunol 167:6593–6600PubMedCrossRefGoogle Scholar
  72. Williams MC (2003) Alveolar type I cells: molecular phenotype and development. Annu Rev Physiol 65:669–695PubMedCrossRefGoogle Scholar
  73. Wroe PC, Finkelstein JA, Ray GT, Linder JA, Johnson KM, Rifas-Shiman S et al (2012) Aging population and future burden of pneumococcal pneumonia in the United States. J Infect Dis 205:1589–1592PubMedCrossRefGoogle Scholar
  74. Young SL, Fram EK, Larson E, Wright JR (1993) Recycling of surfactant lipid and apoprotein-A studied by electron microscopic autoradiography. Am J Physiol Lung Cell Mol Physiol 265:L19–L26Google Scholar
  75. Yu SH, Possmayer F (1996) Effect of pulmonary surfactant protein A and neutral lipid on accretion and organization of dipalmitoylphosphatidylcholine in surface films. J Lipid Res 37:1278–1288PubMedGoogle Scholar

Copyright information

© American Aging Association 2014

Authors and Affiliations

  • Juan I. Moliva
    • 1
  • Murugesan V. S. Rajaram
    • 1
    • 2
  • Sabeen Sidiki
    • 1
  • Smitha J. Sasindran
    • 1
  • Evelyn Guirado
    • 1
  • Xueliang Jeff Pan
    • 3
  • Shu-Hua Wang
    • 1
    • 4
  • Patrick RossJr.
    • 5
  • William P. Lafuse
    • 1
    • 2
  • Larry S. Schlesinger
    • 1
    • 2
  • Joanne Turner
    • 1
    • 2
  • Jordi B. Torrelles
    • 1
    • 2
  1. 1.Center for Microbial Interface BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusUSA
  3. 3.Center for BiostatisticsThe Ohio State UniversityColumbusUSA
  4. 4.Division of Infectious Diseases, Department of Internal MedicineThe Ohio State UniversityColumbusUSA
  5. 5.Division of Thoracic Surgery, Department of SurgeryThe Ohio State UniversityColumbusUSA

Personalised recommendations