Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study

Abstract

Long-lived individuals delay aging and age-related diseases like diabetes, hypertension, and cardiovascular disease. The exact underlying mechanisms are largely unknown, but enhanced mitochondrial biogenesis and preservation of mitochondrial function have been suggested to explain healthy ageing. We investigated whether individuals belonging to long-lived families have altered mitochondrial DNA (mtDNA) content, as a biomarker of mitochondrial biogenesis and measured expression of genes regulating mitochondrial biogenesis. mtDNA and nuclear DNA (nDNA) levels were measured in blood samples from 2,734 participants from the Leiden Longevity Study: 704 nonagenarian siblings, 1,388 of their middle-aged offspring and 642 controls. We confirmed a negative correlation of mtDNA content in blood with age and a higher content in females. The middle-aged offspring had, on average, lower levels of mtDNA than controls and the nonagenarian siblings had an even lower mtDNA content (mtDNA/nDNA ratio = 0.744 ± 0.065, 0.767 ± 0.058 and 0.698 ± 0.074, respectively; p controls-offspring = 3.4 × 10−12, p controls-nonagenarians = 6.5 × 10−6), which was independent of the confounding effects of age and gender. Subsequently, we examined in a subset of the study the expression in blood of two genes regulating mitochondrial biogenesis, YY1 and PGC-1α. We found a positive association of YY1 expression and mtDNA content in controls. The observed absence of such an association in the offspring suggests an altered regulation of mitochondrial biogenesis in the members of long-lived families. In conclusion, in this study, we show that mtDNA content decreases with age and that low mtDNA content is associated with familial longevity. Our data suggest that preservation of mitochondrial function rather than enhancing mitochondrial biogenesis is a characteristic of long-lived families.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baker DJ, Betik AC, Krause DJ, Hepple RT (2006) No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity. J Gerontol A Biol Sci Med Sci 61:675–684

  2. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

  3. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736–740

  4. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A (2013) Exercise is the real polypill. Physiology (Bethesda) 28:330–358

  5. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638

  6. Gouspillou G, Hepple RT (2013) Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Exp Gerontol 48(10):1075–1084

  7. Hebert SL, Lanza IR, Nair KS (2010) Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev 131:451–462

  8. Hepple RT, Baker DJ, McConkey M, Murynka T, Norris R (2006) Caloric restriction protects mitochondrial function with aging in skeletal and cardiac muscles. Rejuvenation Res 9:219–222

  9. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457

  10. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, Nair KS (2008) Endurance exercise as a countermeasure for aging. Diabetes 57:2933–2942

  11. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR III, Dasari S, Walrand S, Short KR, Johnson ML, Robinson MM, Schimke JM, Jakaitis DR, Asmann YW, Sun Z, Nair KS (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788

  12. Malik AN, Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 5:481–492

  13. Omodei D, Fontana L (2011) Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 585:1537–1542

  14. Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA, Pawelec G, Slagboom PE (2013) Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12:24–31

  15. Reiling E, Ling C, Uitterlinden AG, van 't Riet E, Welschen LM, Ladenvall C, Almgren P, Lyssenko V, Nijpels G, van Hove EC, Maassen JA, de Geus EJ, Boomsma DI, Dekker JM, Groop L, Willemsen G, 't Hart LM (2010) The association of mitochondrial content with prevalent and incident type 2 diabetes. J Clin Endocrinol Metab 95:1909–1915

  16. Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, Thompson JE, Melov S, Mocellin NJ, Kujoth GC, Prolla TA, Tarnopolsky MA (2011) Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci USA 108:4135–4140

  17. Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23:459–466

  18. Schoenmaker M, de Craen AJ, de Meijer PH, Beekman M, Blauw GJ, Slagboom PE, Westendorp RG (2006) Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study. Eur J Hum Genet 14:79–84

  19. Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632

  20. Westendorp RG, van Heemst D, Rozing MP, Frolich M, Mooijaart SP, Blauw GJ, Beekman M, Heijmans BT, de Craen AJ, Slagboom PE (2009) Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: the Leiden Longevity Study. J Am Geriatr Soc 57:1634–1637

  21. Wisloff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al-Share Q, Fernstrom M, Rezaei K, Lee SJ, Koch LG, Britton SL (2005) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307:418–420

Download references

Acknowledgments

We thank all the participants of the Leiden Longevity Study. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2011) under grant agreement no. 259679. This study was supported by a grant from the Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems Biology, and the Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), by Unilever Colworth and by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007), and a grant from ZonMW, Priority Medicines Elderly program (project no. 113102006).

Author information

Correspondence to L. M. ’t Hart.

About this article

Cite this article

van Leeuwen, N., Beekman, M., Deelen, J. et al. Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. AGE 36, 9629 (2014). https://doi.org/10.1007/s11357-014-9629-0

Download citation

Keywords

  • Mitochondria
  • mtDNA
  • Healthy aging
  • Familial longevity
  • Mitochondrial biogenesis