, 36:9624 | Cite as

MEG spectral analysis in subtypes of mild cognitive impairment

  • M. E. López
  • P. Cuesta
  • P. Garcés
  • P. N. Castellanos
  • S. Aurtenetxe
  • R. Bajo
  • A. Marcos
  • M. L. Delgado
  • P. Montejo
  • J. L. López-Pantoja
  • F. Maestú
  • A. Fernandez


Mild cognitive impairment (MCI) has been described as an intermediate stage between normal aging and dementia. Previous studies characterized the alterations of brain oscillatory activity at this stage, but little is known about the differences between single and multidomain amnestic MCI patients. In order to study the patterns of oscillatory magnetic activity in amnestic MCI subtypes, a total of 105 subjects underwent an eyes-closed resting-state magnetoencephalographic recording: 36 healthy controls, 33 amnestic single domain MCIs (a-sd-MCI), and 36 amnestic multidomain MCIs (a-md-MCI). Relative power values were calculated and compared among groups. Subsequently, relative power values were correlated with neuropsychological tests scores and hippocampal volumes. Both MCI groups showed an increase in relative power in lower frequency bands (delta and theta frequency ranges) and a decrease in power values in higher frequency bands (alpha and beta frequency ranges), as compared with the control group. More importantly, clear differences emerged from the comparison between the two amnestic MCI subtypes. The a-md-MCI group showed a significant power increase within delta and theta ranges and reduced relative power within alpha and beta ranges. Such pattern correlated with the neuropsychological performance, indicating that the a-md-MCI subtype is associated not only with a “slowing” of the spectrum but also with a poorer cognitive status. These results suggest that a-md-MCI patients are characterized by a brain activity profile that is closer to that observed in Alzheimer disease. Therefore, it might be hypothesized that the likelihood of conversion to dementia would be higher within this subtype.


Mild cognitive impairment Subtypes MEG Relative power Neuropsychological performance 



This study was supported by two projects, PSI2009-14415-C03-01 and PSI2012-38375-C03-01, from the Spanish Ministry of Science and Economy, and a predoctoral fellowship from the Ministry of Education (FPU AP-2008- 00175), a predoctoral fellowship from the Spanish Ministry of Science and Innovation (BES-2010-036469), a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM), and a predoctoral fellow from the Basque Government.


  1. Agrell B, Dehlin O (1998) The clock-drawing test. Age Ageing 27:399–403CrossRefGoogle Scholar
  2. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:270–279PubMedCentralPubMedCrossRefGoogle Scholar
  3. Auer S, Reisberg B (1997) The GDS/FAST staging system. Int Psychogeriatry 9(1):167–171CrossRefGoogle Scholar
  4. Babiloni C, Binetti G, Cassetta E, Cerboneschi D, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Pascual-Marqui RD, Rodriguez G, Romani GL, Salinari S, Tecchio F, Vitali P, Zanetti O, Zappasodi F, Rossini PM (2004) Mapping distributed sources of cortical rhythms in mild Alzheimer's disease. A multicentric EEG study. Neuroimage 22(1):57–67PubMedCrossRefGoogle Scholar
  5. Babiloni C, Benussi L, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Ghidoni R, Miniussi C, Rodriguez G, Romani GL, Squitti R, Ventriglia MC, Rossini PM (2006a) Apolipoprotein E and alpha brain rhythms in mild cognitive impairment: a multicentric electroencephalogram study. Ann Neurol 59:323–334PubMedCrossRefGoogle Scholar
  6. Babiloni C, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Hirata K, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Rodriguez G, Romani GL, Salinari S, Rossini PM (2006b) Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 117:252–268PubMedCrossRefGoogle Scholar
  7. Babiloni C, Frisoni G, Steriade M, Bresciani L, Binetti G, Del Percio C, Geroldi C, Miniussi C, Nobili F, Rodriguez G, Zappasodi F, Carfagna T, Rossini PM (2006c) Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer's disease. Clin Neurophysiol 117(5):1113–1129PubMedCrossRefGoogle Scholar
  8. Babiloni C, Frisoni GB, Pievani M, Vecchio F, Lizio R, Buttiglione M, Geroldi C, Fracassi C, Eusebi F, Ferri R, Rossini PM (2009) Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 44:123–135PubMedCrossRefGoogle Scholar
  9. Babiloni C, Visser PJ, Frisoni G, De Deyn PP, Bresciani L, Jelic V, Nagels G, Rodriguez G, Rossini PM, Vecchio F, Colombo D, Verhey F, Wahlund LO, Nobili F (2010) Cortical sources of resting EEG rhythms in mild cognitive impairment and subjective memory complaint. Neurobiol Agin 31:1787–1798CrossRefGoogle Scholar
  10. Bajo R, Maestú F, Nevado A, Sancho M, Gutiérrez R, Campo P, Castellanos NP, Gil P, Moratti S, Pereda E, Del-Pozo F (2010) Functional connectivity in mild cognitive impairment during a memory task: implications for the disconnection hypothesis. J Alzheimers Dis 22(1):183–193PubMedGoogle Scholar
  11. Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS (2005) Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 64:834–841PubMedCrossRefGoogle Scholar
  12. Benton AL, Hamsher K (1989) Multilingual aplasia examination, 2nd edn. Department of Neurology and Psychology, The University of Iowa, Iowa CityGoogle Scholar
  13. Berendse HW, Verbunt JP, Scheltens P, van Dijk BW, Jonkman EJ (2000) Magnetoencephalographic analysis of cortical activity in Alzheimer's disease: a pilot study. Clin Neurophysiol 111:604–612PubMedCrossRefGoogle Scholar
  14. Brodaty H, Heffernan M, Kochan NA, Draper B, Trollor JN, Reppermund S, Slavin MJ, Sachdev PS (2012) Mild cognitive impairment in a community sample: The Sydney Memory and Ageing Study. Alzheimers Dement 9(3):310–317PubMedCrossRefGoogle Scholar
  15. Caffarra P, Ghetti C, Concari L, Venneri A (2008) Differential patterns of hypoperfusion in subtypes of mild cognitive impairment. Open Neuroimag J 2:20–28PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dauwels J, Srinivasan K, Ramasubba Reddy M, Musha, T, Vialatte FB, Latchoumane C, Jeong J, Cichocki A (2011) Slowing and loss of complexity in Alzheimer's EEG: two sides of the same coin? Int J Alzheimers Dis 539621Google Scholar
  17. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sperling RA (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–411PubMedCrossRefGoogle Scholar
  18. Diniz BS, Nunes PV, Yassuda MS, Forlenza OV (2009) Diagnosis of mild cognitive impairment revisited after one year. Preliminary results of a prospective study. Dement Geriatr Cogn Disord 27(3):224–231PubMedCrossRefGoogle Scholar
  19. Dubois B, Feldman HH, Jacova C, Cummings JL, De Kosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, de Souza LC, Stern J, Visser PJ, Scheltens P (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127PubMedCrossRefGoogle Scholar
  20. Ernst MD (2004) Permutation methods: a basis for exact inference. Stat Sci 19(4):676–685CrossRefGoogle Scholar
  21. Farias ST, Mungas D, Jagust W (2005) Degree of discrepancy between self and other-reported everyday functioning by cognitive status: dementia, mild cognitive impairment, and healthy elders. Int J Geriatr Psychiatry 20:827–834PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fernandez A, Maestu F, Amo C, Gil P, Fehr T, Wienbruch C, Rockstroh B, Elbert T, Ortiz T (2002) Focal temporoparietal slow activity in Alzheimer's disease revealed by magnetoencephalography. Biol Psychiatry 52:764–770PubMedCrossRefGoogle Scholar
  23. Fernandez A, Arrazola J, Maestu F, Amo C, Gil-Gregorio P, Wienbruch C, Ortiz T (2003) Correlations of hippocampal atrophy and focal low-frequency magnetic activity in Alzheimer disease: volumetric MR imaging-magnetoencephalographic study. AJNR Am J Neuroradiol 24:481–487PubMedGoogle Scholar
  24. Fernandez A, Hornero R, Mayo A, Poza J, Maestu F, Ortiz T (2006a) Quantitative electroencephalography of spontaneous brain activity in Alzheimer disease: an exhaustive frequency analysis. Alzheimer Dis Assoc Disord 20:153–159PubMedCrossRefGoogle Scholar
  25. Fernandez A, Hornero R, Mayo A, Poza J, Gil-Gregorio P, Ortiz T (2006b) MEG spectral profile in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 117:306–314PubMedCrossRefGoogle Scholar
  26. Fernandez A, Turrero A, Zuluaga P, Gil P, Maestu F, Campo P, Ortiz T (2006c) Magnetoencephalographic parietal delta dipole density in mild cognitive impairment: preliminary results of a method to estimate the risk of developing Alzheimer disease. Arch Neurol 63:427–430PubMedCrossRefGoogle Scholar
  27. Fernandez A, Turrero A, Zuluaga P, Gil-Gregorio P, del Pozo F, Maestu F, Moratti S (2013) MEG delta mapping along the healthy aging-Alzheimer’s disease continuum: diagnostic implications. J Alzh Dis 35(3):495–507Google Scholar
  28. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMedCrossRefGoogle Scholar
  29. Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mezenge F, de la Sayette V, Viader F, Baron JC, Eustache F, Chetelat G (2009) Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain 132:2058–2067PubMedCentralPubMedCrossRefGoogle Scholar
  30. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet 367:1262–1270PubMedCrossRefGoogle Scholar
  31. Grundman M, Petersen RC, Ferris S, Thomas RG, Aisen PS, Bennett DA, Foster NL, Jack CR Jr, Galasko DR, Doody R, Kaye J, Sano M, Mohs R, Gauthier S, Kim HT, Jin S, Schultz AN, Schafer K, Mulnard R, van Dyck CH, Mintzer J, Zamrini EY, Cahn-Weiner D, Thal LJ (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61:59–66PubMedCrossRefGoogle Scholar
  32. Grunwald M, Busse F, Hensel A, Riedel-Heller S, Kruggel F, Arendt T, Wolf H, Gertz HJ (2002) Theta-power differences in patients with mild cognitive impairment under rest condition and during haptic tasks. Alzheimer Dis Assoc Disord 16:40–48PubMedCrossRefGoogle Scholar
  33. Haense C, Kalbe E, Herholz K, Hohmann C, Neumaier B, Krais R, Heiss WD (2012) Cholinergic system function and cognition in mild cognitive impairment. Neurobiol Aging 33:867–877PubMedCrossRefGoogle Scholar
  34. Han JW, Kim TH, Lee SB, Park JH, Lee JJ, Huh Y, Park JE, Jhoo JH, Lee DY, Kim KW (2012) Predictive validity and diagnostic stability of mild cognitive impairment subtypes. Alzheimers Dement 8:553–559PubMedCrossRefGoogle Scholar
  35. He J, Farias S, Martinez O, Reed B, Mungas D, Decarli C (2009) Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes. Arch Neurol 66(11):1393–1399PubMedCentralPubMedCrossRefGoogle Scholar
  36. Huang C, Wahlund L, Dierks T, Julin P, Winblad B, Jelic V (2000) Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin Neurophysiol 111:1961–1967Google Scholar
  37. Jack CR Jr, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397–1403PubMedCentralPubMedCrossRefGoogle Scholar
  38. Jelic V, Shigeta M, Julin P, Almkvist O, Winblad B, Wahlund LO (1996) Quantitative electroencephalography power and coherence in Alzheimer's disease and mild cognitive impairment. Dementia 7:314–323PubMedGoogle Scholar
  39. Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A, Winblad B, Wahlund LO (2000) Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease. Neurobiol Aging 21:533–540PubMedCrossRefGoogle Scholar
  40. Jelic V, Kivipelto M, Winblad B (2005) Clinical trials in mild cognitive impairment: lessons for the future. J Neurol Neurosurg Psychiatry 77(4):429–438PubMedCentralPubMedCrossRefGoogle Scholar
  41. Jeong J (2004) EEG dynamics in patients with Alzheimer's disease. Clin Neurophysiol 115:1490–1505PubMedCrossRefGoogle Scholar
  42. Kaplan E, Goodglass H, Weintraub S (1983) The Boston Naming Test Philadelphia: Lea and FebigerGoogle Scholar
  43. Larrieu S, Letenneur L, Orgogozo JM, Fabrigoule C, Amieva H, Le Carret N, Barberger-Gateau P, Dartigues JF (2002) Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 59:1594–1599PubMedCrossRefGoogle Scholar
  44. Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430PubMedCrossRefGoogle Scholar
  45. Lawton MP, Brodie EM (1969) Assessment of older people: self maintaining and instrumental activity of daily living. J Gerontol 9:179–186CrossRefGoogle Scholar
  46. Lobo A, Ezquerra J, Gomez BF, Sala JM, Seva DA (1979) Cognitive mini-test (a simple practical test to detect intellectual changes in medical patients). Actas Luso Esp Neurol Psiquiatr Cienc Afines 7:189–202PubMedGoogle Scholar
  47. Maestú F, Campo P, Del Río D, Moratti S, Gil-Gregorio P, Fernández A, Capilla A, Ortiz T (2008) Increased biomagnetic activity in the ventral pathway in mild cognitive impairment. Clin Neurophysiol 119(6):1320–1327PubMedCrossRefGoogle Scholar
  48. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190PubMedCrossRefGoogle Scholar
  49. Martin SB, Smith CD, Collins HR, Schmitt FA, Gold BT (2010) Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment. Neurobiol Aging 31:1099–1106PubMedCentralPubMedCrossRefGoogle Scholar
  50. McKhan G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944CrossRefGoogle Scholar
  51. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405PubMedGoogle Scholar
  52. Mufson JC, Chen EY, Cochran EJ, Beckett LA, Bennett DA, Kordower JH (1999) Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp Neuro 158:469–490CrossRefGoogle Scholar
  53. Nestor PJ, Scheltens P, Hodges JR (2004) Advances in the early detection of Alzheimer's disease. Nat Med 10(Suppl):S34–S41PubMedCrossRefGoogle Scholar
  54. Nichols TE, Holmes AP (2001) Nonparametric permutation tests for human neuroimaging: a primer with examples. Hum Brain Mapping 15:1–25CrossRefGoogle Scholar
  55. Nordlund A, Rolstad S, Klang O, Edman A, Hansen S, Wallin A (2010) Two-year outcome of MCI subtypes and aetiologies in the Goteborg MCI study. J Neurol Neurosurg Psychiatry 81:541–546PubMedCrossRefGoogle Scholar
  56. Norris G, Tate RL (2000) The behavioural assessment of the dysexecutive syndrome (BADS): ecological, concurrent and construct validity. Neuropsychological Rehabilitation 10:33–45CrossRefGoogle Scholar
  57. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  58. Oostenveld R, Fries P, Maris E, Schoffelen J‐M (2011) FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. doi: 10.1155/2011/156869
  59. Osipova D, Ahveninen J, Jensen O, Ylikoski A, Pekkonen E (2005) Altered generation of spontaneous oscillations in Alzheimer's disease. Neuroimage 27:835–841PubMedCrossRefGoogle Scholar
  60. Osipova D, Rantanen K, Ahveninen J, Ylikoski R, Häppölä O, Strandberg T, Pekkonen E (2006) Source estimation of spontaneous MEG oscillations in mild cognitive impairment. Neurosci Lett 405(1–2):57–61PubMedCrossRefGoogle Scholar
  61. Peña-Casanova J (1990) Programa Integrado de Exploración Neuropsicológica- Test Barcelona Protocolo Masson, SA, BarcelonaGoogle Scholar
  62. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308PubMedCrossRefGoogle Scholar
  63. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992PubMedCrossRefGoogle Scholar
  64. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194PubMedCrossRefGoogle Scholar
  65. Petersen RC (2005) Mild cognitive impairment: where are we? Alzheimer Dis Assoc Disord 19:166–169PubMedCrossRefGoogle Scholar
  66. Pfeffer RI, Kurosaki TT, Harrah CH Jr, Chance JM, Filos S (1982) Measurement of functional activities in older adults in the community. J Gerontol 37:323–329PubMedCrossRefGoogle Scholar
  67. Prichep LS, John ER, Ferris SH, Reisberg B, Almas M, Alper K, Cancro R (1994) Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol Aging 15:85–90PubMedCrossRefGoogle Scholar
  68. Prichep LS, John ER, Ferris SH, Rausch L, Fang Z, Cancro R, Torossian C, Reisberg B (2006) Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol Aging 27:471–481PubMedCrossRefGoogle Scholar
  69. Reisberg B, Ferris SH, de León MJ, Crook T (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatr 139:1136–1139PubMedGoogle Scholar
  70. Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276CrossRefGoogle Scholar
  71. Rodriguez G, Copello F, Vitali P, Perego G, Nobili F (1999) EEG spectral profile to stage Alzheimer's disease. Clin Neurophysiol 110:1831–1837PubMedCrossRefGoogle Scholar
  72. Rosen WG, Terry RD, Fuld PA, Katzman R, Peck A (1980) Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 7:486–488PubMedCrossRefGoogle Scholar
  73. Rossini PM, Buscema M, Capriotti M, Grossi E, Rodriguez G, Del Percio C, Babiloni C (2008) Is it possible to automatically distinguish resting EEG data of normal elderly vs mild cognitive impairment subjects with high degree of accuracy? Clin Neurophysiol 119:1534–1545PubMedCrossRefGoogle Scholar
  74. Shah Y, Tangalos EG, Petersen RC (2000) Mild cognitive impairment. When is it a precursor to Alzheimer's disease? Geriatrics 55(9):62, 65–8Google Scholar
  75. Tabert MH, Manly JJ, Liu X, Pelton GH, Rosenblum S, Jacobs M, Zamora D, Goodkind M, Bell K, Stern Y, Devanand DP (2006) Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry 63:916–924PubMedCrossRefGoogle Scholar
  76. Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys 97:124905CrossRefGoogle Scholar
  77. van der Hiele K, Vein AA, Reijntjes RH, Westendorp RG, Bollen EL, van Buchem MA, van Dijk JG, Middelkoop HA (2007) EEG correlates in the spectrum of cognitive decline. Clin Neurophysiol 118:1931–1939PubMedCrossRefGoogle Scholar
  78. van Deursen JA, Vuurman EF, Verhey FR, van Kranen-Mastenbroek VH, Riedel WJ (2008) Increased EEG gamma band activity in Alzheimer's disease and mild cognitive impairment. J Neural Transm 115:1301–1311PubMedCentralPubMedCrossRefGoogle Scholar
  79. Warrington EK, James M (1991) The visual object and space perception battery bury St Edmunds. Thames Valley Test Company, UKGoogle Scholar
  80. Wechsler D (1987) Wechsler Memory Scale—revised (manual). The Psychological Corporation, San AntonioGoogle Scholar
  81. Whitwell JL, Petersen RC, Negash S, Weigand SD, Kantarci K, Ivnik RJ, Knopman DS, Boeve BF, Smith GE, Jack CR Jr (2007) Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol 64(8):1130–1138PubMedCentralPubMedCrossRefGoogle Scholar
  82. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256:240–246PubMedCrossRefGoogle Scholar
  83. Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL, Aizenstein HJ, Cohen AD, Weissfeld LA, Mathis CA, Klunk WE, De-Kosky ST (2009) Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 65:557–568PubMedCentralPubMedCrossRefGoogle Scholar
  84. Yesavage JA, Brink TL, Lum O, Huang V, Adey M, Leirer VO (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17:37–49PubMedCrossRefGoogle Scholar
  85. Zhang H, Sachdev PS, Wen W, Kochan NA, Crawford JD, Brodaty H, Slavin MJ, Reppermund S, Draper B, Zhu W, Kang K, Trollor JN (2012) Gray matter atrophy patterns of mild cognitive impairment subtypes. J Neurol Sci 315:26–32PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2014

Authors and Affiliations

  • M. E. López
    • 1
    • 2
  • P. Cuesta
    • 1
    • 2
  • P. Garcés
    • 1
    • 3
  • P. N. Castellanos
    • 1
  • S. Aurtenetxe
    • 1
    • 2
  • R. Bajo
    • 1
    • 4
  • A. Marcos
    • 5
  • M. L. Delgado
    • 6
  • P. Montejo
    • 7
  • J. L. López-Pantoja
    • 8
  • F. Maestú
    • 1
    • 2
  • A. Fernandez
    • 9
  1. 1.Laboratory of Cognitive and Computational Neuroscience (UCM-UPM)Centre for Biomedical Technology (CTB)MadridSpain
  2. 2.Department of Basic Psychology IIComplutense University of MadridMadridSpain
  3. 3.CEI Campus MoncloaUCM-UPMMadridSpain
  4. 4.Department of MathematicsUNIR Universidad Internacional de La RiojaLogroñoSpain
  5. 5.Neurology DepartmentSan Carlos University HospitalMadridSpain
  6. 6.Seniors Center of the District of ChamartinMadridSpain
  7. 7.Memory Decline Prevention Center Madrid Salud, Ayuntamiento de MadridMadridSpain
  8. 8.Department of Psychiatry and Laboratory of NeuroendocrinologySan Carlos University HospitalMadridSpain
  9. 9.Department of Psychiatry and Medical Psychology School of MedicineComplutense University of MadridMadridSpain

Personalised recommendations