Advertisement

AGE

, Volume 35, Issue 5, pp 1607–1620 | Cite as

Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding

  • Anna Picca
  • Flavio Fracasso
  • Vito Pesce
  • Palmiro Cantatore
  • Anna-Maria Joseph
  • Christiaan Leeuwenburgh
  • Maria Nicola Gadaleta
  • Angela Maria Serena Lezza
Article

Abstract

Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle’s bioenergetics capability such as the brain’s frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.8-kb mtDNA deletion in the frontal cortex from young (6-month-old) and aged (26-month-old), ad libitum-fed (AL) and calorie-restricted (CR), rats. We found a 70 % increase in TFAM amount, a 25 % loss in mtDNA content, and a 35 % increase in the 4.8-kb deletion content in the aged AL animals with respect to the young rats. TFAM-specific binding to six mtDNA regions was analyzed by mtDNA immunoprecipitation and semiquantitative polymerase chain reaction (PCR), showing a marked age-related decrease. Quantitative real-time PCR at two subregions involved in mtDNA replication demonstrated, in aged AL rats, a remarkable decrease (60–70 %) of TFAM-bound mtDNA. The decreased TFAM binding is a novel finding that may explain the mtDNA loss in spite of the compensatory TFAM increased amount. In aged CR rats, TFAM amount increased and mtDNA content decreased with respect to young rats’ values, but the extent of the changes was smaller than in aged AL rats. Attenuation of the age-related effects due to the diet in the CR animals was further evidenced by the unchanged content of the 4.8-kb deletion with respect to that of young animals and by the partial prevention of the age-related decrease in TFAM binding to mtDNA.

Keywords

Aging rat frontal cortex mitochondria Calorie restriction diet TFAM amount mtDNA content mtDNA 4.8-kb deletion content mtDNA–TFAM binding 

Notes

Acknowledgments

This research was supported by grants to VP (Contributo d’Ateneo Bari 2009), MNG (Contributo d’Ateneo Bari 2008, fiRSt s.r.l. 2009 and FIRB-MERIT 2008 No. RBNE08HWLZ_012), AMSL (Contributo d’Ateneo Bari 2007), and CL (NIA R01 AG17994), the University of Florida Institute on Aging, and the Claude D. Pepper Older Americans Independence Center (1 P30 AG028740). We thank Dr. C.F. Minervini for the helpful discussions, Dr. F.P. Fallacara for the assistance with the experiments, and Ms. R. Longo for the expert secretarial assistance.

References

  1. Alano CC, Tran A, Tao R, Ying W, Karliner JS, Swanson RA (2007) Differences among cell types in NAD(+) compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes. J Neurosci Res 85:3378–3385PubMedCrossRefGoogle Scholar
  2. Anderson RM, Weindruch R (2010) Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 21:134–141PubMedCrossRefGoogle Scholar
  3. Aspnes LE, Lee CM, Weindruch R, Chung SS, Roecker EB, Aiken JM (1997) Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 11:573–581PubMedGoogle Scholar
  4. Bagh MB, Thakurta IG, Biswas M, Behera P, Chakrabarti S (2011) Age-related oxidative decline of mitochondrial functions in rat brain is prevented by long term oral antioxidant supplementation. Biogerontology 12:119–131PubMedCrossRefGoogle Scholar
  5. Bakala H, Delaval E, Hamelin M, Bismuth J, Borot-Laloi C, Corman B, Friguet B (2003) Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. Eur J Biochem 270:2295–2302PubMedCrossRefGoogle Scholar
  6. Barazzoni R, Short KR, Nair KS (2000) Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275:3343–3347PubMedCrossRefGoogle Scholar
  7. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264PubMedCrossRefGoogle Scholar
  8. Barja G (2007) Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res 10:215–224PubMedCrossRefGoogle Scholar
  9. Barrientos A, Casademont J, Cardellach F, Estivill X, Urbano-Marquez A, Nunes V (1997) Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Brain Res Mol Brain Res 52:284–289PubMedCrossRefGoogle Scholar
  10. Bender A, Schwarzkopf RM, McMillan A, Krishnan KJ, Rieder G, Neumann M, Elstner M, Turnbull DM, Klopstock T (2008) Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol 255:1231–1235PubMedCrossRefGoogle Scholar
  11. Blokhin A, Vyshkina T, Komoly S, Kalman B (2008) Variations in mitochondrial DNA copy numbers in MS brains. J Mol Neurosci 35:283–287PubMedCrossRefGoogle Scholar
  12. Bota DA, Van Remmen H, Davies KJA (2002) Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 532:103–106PubMedCrossRefGoogle Scholar
  13. Bua E, McKiernan SH, Aiken JM (2004) Calorie restriction limits the generation but not the progression of mitochondrial abnormalities in aging skeletal muscle. FASEB J 18:582–584PubMedGoogle Scholar
  14. Canugovi C, Maynard S, Bayne AC, Sykora P, Tian J, de Souza-Pinto NC, Croteau DL, Bohr V (2010) The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair 9:1080–1089PubMedCrossRefGoogle Scholar
  15. Carter CS, Hofer T, Seo AY, Leeuwenburgh C (2007) Molecular mechanisms of life- and health-span extension: calorie restriction and exercise intervention. Appl Physiol Nutr Metab 32:954–966PubMedCrossRefGoogle Scholar
  16. Cassano P, Lezza AM, Leeuwenburgh C, Cantatore P, Gadaleta MN (2004) Measurement of the 4,834-bp mitochondrial DNA deletion level in aging rat liver and brain subjected or not to caloric restriction diet. Ann N Y Acad Sci 1019:269–273PubMedCrossRefGoogle Scholar
  17. Cassano P, Sciancalepore AG, Lezza AM, Leeuwenburgh C, Cantatore P, Gadaleta MN (2006) Tissue-specific effect of age and caloric restriction diet on mitochondrial DNA content. Rejuvenation Res 9:211–214PubMedCrossRefGoogle Scholar
  18. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7:2–12PubMedCrossRefGoogle Scholar
  19. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762PubMedCrossRefGoogle Scholar
  20. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch A, Smith SR, Ravussin E (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76. doi: 10.1371/journal.pmed.0040076 PubMedCrossRefGoogle Scholar
  21. Cotrina ML, Nedergaard M (2002) Astrocytes in the aging brain. J Neurosci Res 67:1–10PubMedCrossRefGoogle Scholar
  22. Dinardo MM, Musicco C, Fracasso F, Milella F, Gadaleta MN, Gadaleta G, Cantatore P (2003) Acetylation and level of mitochondrial transcription factor A in several organs of young and old rats. Biochem Biophys Res Commun 301:187–191PubMedCrossRefGoogle Scholar
  23. Druzhyna NM, Wilson GL, LeDoux SP (2008) Mitochondrial DNA repair in aging and disease. Mech Ageing Dev 129:383–390PubMedCrossRefGoogle Scholar
  24. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson NG (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944PubMedCrossRefGoogle Scholar
  25. Fisher RP, Clayton DA (1988) Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol 8:3496–3509PubMedGoogle Scholar
  26. Fontana L (2009) The scientific basis of caloric restriction leading to longer life. Curr Opin Gastroenterol 25:144–150PubMedCrossRefGoogle Scholar
  27. Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572PubMedCrossRefGoogle Scholar
  28. Fukui H, Moraes CT (2009) Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 18:1028–1036PubMedCrossRefGoogle Scholar
  29. Gadaleta MN, Petruzzella V, Renis M, Fracasso F, Cantatore P (1990) Reduced transcription of mitochondrial DNA in the senescent rat. Tissue dependence and effect of l-carnitine. Eur J Biochem 187:501–506PubMedCrossRefGoogle Scholar
  30. Gadaleta MN, Rainaldi G, Lezza AM, Milella F, Fracasso F, Cantatore P (1992) Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutat Res 275:181–193PubMedCrossRefGoogle Scholar
  31. Gilmer LK, Ansari MA, Roberts KN, Scheff SW (2010) Age-related changes in mitochondrial respiration and oxidative damage in the cerebral cortex of the Fisher 344 rat. Mech Ageing Dev 131:133–143PubMedCrossRefGoogle Scholar
  32. Grill JD, Riddle DR (2002) Age-related and laminar-specific dendritic changes in the medial frontal cortex of the rat. Brain Res 937:8–21PubMedCrossRefGoogle Scholar
  33. Guarente L (2008) Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 132:171–176PubMedCrossRefGoogle Scholar
  34. Guevara R, Santandreu FM, Valle A, Gianotti M, Oliver J, Roca P (2009) Sex-dependent differences in aged rat brain mitochondrial function. Free Radic Biol Med 46:169–175PubMedCrossRefGoogle Scholar
  35. Guevara R, Gianotti M, Roca P, Oliver J (2011) Age and sex-related changes in rat brain mitochondrial function. Cell Physiol Biochem 27:201–206PubMedCrossRefGoogle Scholar
  36. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  37. Hiona A, Leeuwenburgh C (2004) Effects of age and caloric restriction on brain neuronal cell death/survival. Ann NY Acad Sci 1019:96–105PubMedCrossRefGoogle Scholar
  38. Kadish I, Thibault O, Blalock EM, Chen K-C, Gant JC, Porter NM, Landfield PW (2009) Hippocampal and cognitive aging across the lifespan: a bioenergetics shift precedes and increased cholesterol trafficking parallels memory impairment. J Neurosci 29:1805–1816PubMedCrossRefGoogle Scholar
  39. Kang CM, Kristal BS, Yu BP (1998) Age-related mitochondrial DNA deletions: effect of dietary restriction. Free Radic Biol Med 24:148–154PubMedCrossRefGoogle Scholar
  40. Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, Hamasaki N, Kang D (2004) Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 24:9823–9834PubMedCrossRefGoogle Scholar
  41. Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P, Shoubridge EA (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 18:3225–3236PubMedCrossRefGoogle Scholar
  42. Kaur M, Sharma S, Kaur G (2008) Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction. Biogerontology 9:441–454PubMedCrossRefGoogle Scholar
  43. Kim JH, Kwak HB, Leeuwenburgh C, Lawler JM (2008) Lifelong exercise and mild (8 %) caloric restriction attenuate age-induced alterations in plantaris muscle morphology, oxidative stress and IGF-1 in the Fischer-344 rat. Exp Gerontol 43:317–329PubMedCrossRefGoogle Scholar
  44. Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279PubMedCrossRefGoogle Scholar
  45. Kujoth GC, Bradshaw PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3(2):e24PubMedCrossRefGoogle Scholar
  46. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236PubMedCrossRefGoogle Scholar
  47. Lee HC, Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med 232:592–606Google Scholar
  48. Lee HC, Lu CY, Fahn HJ, Wei YH (1998) Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296PubMedCrossRefGoogle Scholar
  49. Lezza AMS, Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Cantatore P, Gadaleta MN (2001) Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 in skeletal muscle from aged human subjects. FEBS Lett 501:74–78PubMedCrossRefGoogle Scholar
  50. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645PubMedCrossRefGoogle Scholar
  51. Lu B, Yadav S, Shah PG, Liu T, Tian B, Pukszta S, Villaluna N, Kutejová E, Newlon CS, Santos JH, Suzuki CK (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 282:17363–17374PubMedCrossRefGoogle Scholar
  52. Mansour H, Chamberlain CG, Weible MW II, Hughes S, Chu Y, Chan-Ling T (2008) Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell 7:526–540PubMedCrossRefGoogle Scholar
  53. Masoro EJ (2000) Caloric restriction and aging: an update. Exp Gerontol 35:299–305PubMedCrossRefGoogle Scholar
  54. Matsushima Y, Goto Y, Kaguni LS (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci USA 107:18410–18415PubMedCrossRefGoogle Scholar
  55. McInerny SC, Brown AL, Smith DW (2009) Region-specific changes in mitochondrial D-loop in aged rat CNS. Mech Ageing Dev 130:343–349PubMedCrossRefGoogle Scholar
  56. Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, Oehmichen M (2008) The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 43:645–652PubMedCrossRefGoogle Scholar
  57. Miquel J, Fleming JE (1986) Theoretical end experimental support for an “oxygen radical mitochondrial injury” hypothesis of cell aging. In: Johnson J, Walford R, Harman D, Miquel J (eds) Free radicals, aging, and degenerative diseases. Alan R. Liss, New York, pp 51–74Google Scholar
  58. Musicco C, Capelli C, Pesce V, Timperio AM, Calvani M, Mosconi L, Zolla L, Cantatore P, Gadaleta MN (2009) Accumulation of overoxidized Peroxiredoxin III in aged rat liver mitochondria. Biochim Biophys Acta 1787:890–896PubMedCrossRefGoogle Scholar
  59. Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci 2:1–11Google Scholar
  60. Navarro A, Lopez-Cepero JM, Bandez MJ, Sanchez-Pino MJ, Gomez C, Cadenas C, Boveris A (2008) Hippocampal mitochondrial dysfunction in rat aging. Am J Physiol Regul Integr Comp Physiol 294:R501–R509PubMedCrossRefGoogle Scholar
  61. Ohgaki K, Kanki T, Fukuoh A, Kurisaki H, Aoki Y, Ikeuchi M, Kim SH, Hamasaki N, Kang D (2007) The C-terminal tail of mitochondrial transcription factor A markedly strengthens its general binding to DNA. J Biochem 141:201–211PubMedCrossRefGoogle Scholar
  62. Opalach K, Rangaraju S, Madorsky I, Leeuwenburgh C, Notterpek L (2010) Lifelong calorie restriction alleviates age-related oxidative damage in peripheral nerves. Rejuvenation Res 13:65–74PubMedCrossRefGoogle Scholar
  63. Park SK, Prolla TA (2005) Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev 4:55–65PubMedCrossRefGoogle Scholar
  64. Peinado MA, Martinez M, Pedrosa JA, Quesada A, Peinado JM (1993) Quantitative morphological changes in neurons and glia in the frontal lobe of the aging rat. Anat Rec 237:104–108PubMedCrossRefGoogle Scholar
  65. Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AM, Cantatore P, Gadaleta MN (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30:1223–1233PubMedCrossRefGoogle Scholar
  66. Pesce V, Cormio A, Fracasso F, Lezza AM, Cantatore P, Gadaleta MN (2005) Age-related changes of mitochondrial DNA content and mitochondrial genotypic and phenotypic alterations in rat hind-limb skeletal muscles. J Gerontol A Biol Sci Med Sci 60:715–723PubMedCrossRefGoogle Scholar
  67. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  68. Pollack M, Leeuwenburgh C (2001) Apoptosis and aging: role of the mitochondria. J Gerontol A Biol Sci Med Sci 56:B475–B482PubMedCrossRefGoogle Scholar
  69. Pugh TD, Klopp RG, Weindruch R (1999) Controlling caloric consumption: protocols for rodents and rhesus monkeys. Neurobiol Aging 20:157–165PubMedCrossRefGoogle Scholar
  70. Quintas A, de Solìs AJ, Dìez-Guerra FJ, Carrascosa JM, Begonez E (2012) Age-associated decrease of SIRT1 expression in rat hippocampus. Prevention by late onset caloric restriction. Exp Gerontol 47:198–201PubMedCrossRefGoogle Scholar
  71. Rangaraju S, Hankins D, Madorsky I, Madorsky E, Lee WH, Carter CS, Leeuwenburgh C, Notterpek L (2009) Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with aging. Aging Cell 8:178–191PubMedCrossRefGoogle Scholar
  72. Sanz A, Caro P, Ibanez J, Gomez J, Gredilla R, Barja G (2005) Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 37:83–90PubMedCrossRefGoogle Scholar
  73. Seo AY, Hofer T, Sung B, Judge S, Chung HY, Leeuwenburgh C (2006) Hepatic oxidative stress during aging: effects of 8 % long-term calorie restriction and lifelong exercise. Antioxid Redox Signal 8:529–538PubMedCrossRefGoogle Scholar
  74. Seo AY, Joseph A-M, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542PubMedCrossRefGoogle Scholar
  75. Shi L, Adams MM, Linville MC, Newton IG, Forbes ME, Long AB, Riddle DR, Brunso-Bechtold JK (2007) Caloric restriction eliminates the aging-related decline in NMDA and AMPA receptor subunits in the rat hippocampus and induces homeostasis. Exp Neurol 206:70–79PubMedCrossRefGoogle Scholar
  76. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102:5618–5623PubMedCrossRefGoogle Scholar
  77. Silva JP, Köhler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, Larsson NG (2000) Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 26:336–340PubMedCrossRefGoogle Scholar
  78. Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–323PubMedCrossRefGoogle Scholar
  79. Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18:595–597PubMedGoogle Scholar
  80. Turlejski K, Djavadian R (2002) Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS. Prog Brain Res 136:39–65PubMedCrossRefGoogle Scholar
  81. Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13:539–549PubMedCrossRefGoogle Scholar
  82. Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC (2006) PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol 26:7409–7419PubMedCrossRefGoogle Scholar
  83. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedCrossRefGoogle Scholar
  84. Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Brüning JC, Kahn CR, Clayton DA, Barsh GS, Thorén P, Larsson NG (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137PubMedCrossRefGoogle Scholar
  85. Wiesner RJ, Zsurka G, Kunz WS (2006) Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res 40:1284–1294PubMedCrossRefGoogle Scholar
  86. Yoshida Y, Izumi H, Ise T, Uramoto H, Torigoe T, Ishiguchi H, Murakami T, Tanabe M, Nakayama Y, Itoh H, Kasai H, Kohno K (2002) Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA. Biochem Biophys Res Commun 295:945–951PubMedCrossRefGoogle Scholar
  87. Yowe DL, Ames BN (1998) Quantitation of age-related mitochondrial DNA deletions in rat tissues shows that their pattern of accumulation differs from that of humans. Gene 209:23–30PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2012

Authors and Affiliations

  • Anna Picca
    • 1
  • Flavio Fracasso
    • 1
  • Vito Pesce
    • 1
  • Palmiro Cantatore
    • 1
    • 2
  • Anna-Maria Joseph
    • 3
  • Christiaan Leeuwenburgh
    • 3
  • Maria Nicola Gadaleta
    • 1
    • 2
  • Angela Maria Serena Lezza
    • 1
  1. 1.Department of Biosciences, Biotechnologies and Pharmacological SciencesUniversity of BariBariItaly
  2. 2.Institute of Biomembranes and BioenergeticsCNR-National Research Council of ItalyBariItaly
  3. 3.Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on AgingUniversity of FloridaGainesvilleUSA

Personalised recommendations