AGE

, Volume 35, Issue 5, pp 1559–1574

The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1

Article

Abstract

Nutraceuticals are known to have numerous health and disease preventing properties. Recent studies suggest that extracts containing cranberry may have anti-aging benefits. However, little is known about whether and how cranberry by itself promotes longevity and healthspan in any organism. Here we examined the effect of a cranberry only extract on lifespan and healthspan in Caenorhabditis elegans. Supplementation of the diet with cranberry extract (CBE) increased the lifespan in C. elegans in a concentration-dependent manner. Cranberry also increased tolerance of C. elegans to heat shock, but not to oxidative stress or ultraviolet irradiation. In addition, we tested the effect of cranberry on brood size and motility and found that cranberry did not influence these behaviors. Our mechanistic studies indicated that lifespan extension induced by CBE requires the insulin/IGF signaling pathway and DAF-16. We also found that cranberry promotes longevity through osmotic stress resistant-1 (OSR-1) and one of its downstream effectors, UNC-43, but not through SEK-1, a component of the p38 MAP kinase pathway. However, SIR-2.1 and JNK signaling pathways are not required for cranberry to promote longevity. Our findings suggest that cranberry supplementation confers increased longevity and stress resistance in C. elegans through pathways modulated by daf-16 and osr-1. This study reveals the anti-aging property of widely consumed cranberry and elucidates the underpinning mechanisms.

Keywords

Cranberry Longevity Aging intervention daf-16 osr-1 Caenorhabditis elegans 

References

  1. Abdel-Wahab BA, Abd El-Aziz SM (2012) Ginkgo biloba protects against intermittent hypoxia-induced memory deficits and hippocampal DNA damage in rats. Phytomed Int J Phytother Phytopharmacol 19:444–450CrossRefGoogle Scholar
  2. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab: TEM 11:327–332PubMedCrossRefGoogle Scholar
  3. Ai J, Duan J, Lv X, Chen M, Yang Q, Sun H, Li Q, Xiao Y, Wang Y, Zhang Z, Tan R, Liu Y, Zhao D, Chen T, Yang Y, Wei Y, Zhou Q (2010) Overexpression of FoxO1 causes proliferation of cultured pancreatic beta cells exposed to low nutrition. Biochemistry 49:218–225PubMedCrossRefGoogle Scholar
  4. Apostolidis E, Kwon YI, Shetty K (2006) Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pac J Clin Nutr 15:433–441PubMedGoogle Scholar
  5. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506PubMedCrossRefGoogle Scholar
  6. Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177PubMedCrossRefGoogle Scholar
  7. Bodet C, Chandad F, Grenier D (2006) Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J Dent Res 85:235–239PubMedCrossRefGoogle Scholar
  8. Bodet C, Chandad F, Grenier D (2007a) Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E production by lipopolysaccharide-activated gingival fibroblasts. Eur J Oral Sci 115:64–70PubMedCrossRefGoogle Scholar
  9. Bodet C, Chandad F, Grenier D (2007b) Inhibition of host extracellular matrix destructive enzyme production and activity by a high-molecular-weight cranberry fraction. J Periodontal Res 42:159–168PubMedCrossRefGoogle Scholar
  10. Boyd O, Weng P, Sun X, Alberico T, Laslo M, Obenland DM, Kern B, Zou S (2011) Nectarine promotes longevity in Drosophila melanogaster. Free Radic Biol Med 50:1669–1678PubMedCrossRefGoogle Scholar
  11. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, Driege Y, Martinez P, Hafen E, Withers DJ, Leevers SJ, Partridge L (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102:3105–3110PubMedCrossRefGoogle Scholar
  12. Burger O, Weiss E, Sharon N, Tabak M, Neeman I, Ofek I (2002) Inhibition of Helicobacter pylori adhesion to human gastric mucus by a high-molecular-weight constituent of cranberry juice. Crit Rev Food Sci Nutr 42:279–284PubMedCrossRefGoogle Scholar
  13. Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485PubMedCrossRefGoogle Scholar
  14. Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L (2002) Dietary restriction in long-lived dwarf flies. Science 296:319PubMedCrossRefGoogle Scholar
  15. Cohen E, Dillin A (2008) The insulin paradox: aging, proteotoxicity and neurodegeneration. Nature reviews. Neuroscience 9:759–767PubMedGoogle Scholar
  16. de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501PubMedCrossRefGoogle Scholar
  17. de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A (2007) Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J 21:3431–3441PubMedCrossRefGoogle Scholar
  18. DeFeudis FV, Drieu K (2000) Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 1:25–58PubMedCrossRefGoogle Scholar
  19. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401PubMedCrossRefGoogle Scholar
  20. Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y (1993) Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I. Exp Toxicol Pathol Off J Ges Toxikologische Pathol 45:345–349CrossRefGoogle Scholar
  21. Glenn CF, Chow DK, David L, Cooke CA, Gami MS, Iser WB, Hanselman KB, Goldberg IG, Wolkow CA (2004) Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J Gerontol A Biol Sci Med Sci 59:1251–1260PubMedCrossRefGoogle Scholar
  22. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262PubMedCrossRefGoogle Scholar
  23. Hart AC (2006) Behavior, wormbook, the C. elegans research community, wormbook, doi/10.1895/wormbook.1.87.1, http://www.wormbook.org
  24. Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980PubMedCrossRefGoogle Scholar
  25. Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588PubMedCrossRefGoogle Scholar
  26. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393PubMedGoogle Scholar
  27. Hosono R, Sato Y, Aizawa SI, Mitsui Y (1980) Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Exp Gerontol 15:285–289PubMedCrossRefGoogle Scholar
  28. Howell AB (2007) Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol Nutr Food Res 51:732–737PubMedCrossRefGoogle Scholar
  29. Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 101:8084–8089PubMedCrossRefGoogle Scholar
  30. Johnson TE, Conley WL, Keller ML (1988) Long-lived lines of Caenorhabditis elegans can be used to establish predictive biomarkers of aging. Exp Gerontol 23:281–295PubMedCrossRefGoogle Scholar
  31. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460PubMedCrossRefGoogle Scholar
  32. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512PubMedCrossRefGoogle Scholar
  33. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464PubMedCrossRefGoogle Scholar
  34. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA, Inoue H, Tanaka-Hino M, Hisamoto N, Matsumoto K, Tan MW, Ausubel FM (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–626PubMedCrossRefGoogle Scholar
  35. Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:8905–8909PubMedCrossRefGoogle Scholar
  36. Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11:1950–1957PubMedCrossRefGoogle Scholar
  37. Lee TH, Mun JY, Han SM, Yoon G, Han SS, Koo HS (2009) DIC-1 over-expression enhances respiratory activity in Caenorhabditis elegans by promoting mitochondrial cristae formation. Genes Cells Devoted Mol Cell Mech 14:319–327CrossRefGoogle Scholar
  38. Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20:2131–2136PubMedCrossRefGoogle Scholar
  39. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Gen 28:139–145CrossRefGoogle Scholar
  40. Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278:30843–30848PubMedCrossRefGoogle Scholar
  41. Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 49:B270–B276PubMedCrossRefGoogle Scholar
  42. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485SPubMedGoogle Scholar
  43. Martorell P, Forment JV, de Llanos R, Monton F, Llopis S, Gonzalez N, Genoves S, Cienfuegos E, Monzo H, Ramon D (2011) Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. J Agric Food Chem 59:2077–2085PubMedCrossRefGoogle Scholar
  44. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97PubMedGoogle Scholar
  45. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539PubMedCrossRefGoogle Scholar
  46. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283PubMedCrossRefGoogle Scholar
  47. Neto CC (2007a) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664PubMedCrossRefGoogle Scholar
  48. Neto CC (2007b) Cranberry and its phytochemicals: a review of in vitro anticancer studies. J Nutr 137:186S–193SPubMedGoogle Scholar
  49. Neto CC, Amoroso JW, Liberty AM (2008) Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res 52(Suppl 1):S18–S27PubMedGoogle Scholar
  50. Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 102:4494–4499PubMedCrossRefGoogle Scholar
  51. Pappas E, Schaich KM (2009) Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability. Crit Rev Food Sci Nutr 49:741–781PubMedCrossRefGoogle Scholar
  52. Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HY, Huang Y, Yu H, Chen ZY (2012) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47:170–178PubMedCrossRefGoogle Scholar
  53. Pietsch K, Saul N, Menzel R, Sturzenbaum SR, Steinberg CE (2009) Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10:565–578PubMedCrossRefGoogle Scholar
  54. Pietsch K, Saul N, Chakrabarti S, Sturzenbaum SR, Menzel R, Steinberg CE (2011) Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12:329–347PubMedCrossRefGoogle Scholar
  55. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555PubMedCrossRefGoogle Scholar
  56. Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Gen 37:894–898CrossRefGoogle Scholar
  57. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101:15998–16003PubMedCrossRefGoogle Scholar
  58. Samuel VT, Choi CS, Phillips TG, Romanelli AJ, Geisler JG, Bhanot S, McKay R, Monia B, Shutter JR, Lindberg RA, Shulman GI, Veniant MM (2006) Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55:2042–2050PubMedCrossRefGoogle Scholar
  59. Saul N, Pietsch K, Menzel R, Sturzenbaum SR, Steinberg CE (2010) The longevity effect of tannic acid in Caenorhabditis elegans: disposable soma meets hormesis. J Gerontol A Biol Sci Med Sci 65:626–635PubMedCrossRefGoogle Scholar
  60. Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem 52:2512–2517PubMedCrossRefGoogle Scholar
  61. Shukitt-Hale B, Carey AN, Jenkins D, Rabin BM, Joseph JA (2007) Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging. Neurobiol Aging 28:1187–1194PubMedCrossRefGoogle Scholar
  62. Sobota AE (1984) Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections. J Urol 131:1013–1016PubMedGoogle Scholar
  63. Solomon A, Bandhakavi S, Jabbar S, Shah R, Beitel GJ, Morimoto RI (2004) Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 167:161–170PubMedCrossRefGoogle Scholar
  64. Steinberg D, Feldman M, Ofek I, Weiss EI (2004) Effect of a high-molecular-weight component of cranberry on constituents of dental biofilm. J Antimicrob Chemother 54:86–89PubMedCrossRefGoogle Scholar
  65. Strayer A, Wu Z, Christen Y, Link CD, Luo Y (2003) Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB J 17:2305–2307PubMedGoogle Scholar
  66. Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S (2010) Acai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45:243–251PubMedCrossRefGoogle Scholar
  67. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230PubMedCrossRefGoogle Scholar
  68. van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440–450PubMedCrossRefGoogle Scholar
  69. Verma AK, Johnson JA, Gould MN, Tanner MA (1988) Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res 48:5754–5758PubMedGoogle Scholar
  70. Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615PubMedCrossRefGoogle Scholar
  71. Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139PubMedCrossRefGoogle Scholar
  72. Walker EB, Barney DP, Mickelsen JN, Walton RJ, Mickelsen RA Jr (1997) Cranberry concentrate: UTI prophylaxis. J Fam Pract 45:167–168PubMedGoogle Scholar
  73. Wilson T, Porcari JP, Harbin D (1998) Cranberry extract inhibits low density lipoprotein oxidation. Life Sci 62:PL381–PL386PubMedCrossRefGoogle Scholar
  74. Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68PubMedCrossRefGoogle Scholar
  75. Wu TY, Chen CP, Jinn TR (2011) Traditional Chinese medicines and Alzheimer’s disease. Taiwan J Obstet Gynecol 50:131–135PubMedCrossRefGoogle Scholar
  76. Xue YL, Ahiko T, Miyakawa T, Amino H, Hu F, Furihata K, Kita K, Shirasawa T, Sawano Y, Tanokura M (2011) Isolation and Caenorhabditis elegans lifespan assay of flavonoids from onion. J Agric Food Chem 59:5927–5934PubMedCrossRefGoogle Scholar
  77. Yamada K, Fukushima T (1993) Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Experimental and toxicologic pathology. Off J Ges Toxikologische Pathol 45:375–380CrossRefGoogle Scholar
  78. Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS letters 516:53–57PubMedCrossRefGoogle Scholar
  79. Zhu M, Hu J, Perez E, Phillips D, Kim W, Ghaedian R, Napora JK, Zou S (2011) Effects of long-term cranberry supplementation on endocrine pancreas in aging rats. J Gerontol A Biol Sci Med Sci 66:1139–1151PubMedCrossRefGoogle Scholar
  80. Ziv E, Hu D (2010) Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev 10:201–204PubMedCrossRefGoogle Scholar
  81. Zou S, Sinclair J, Wilson MA, Carey JR, Liedo P, Oropeza A, Kalra A, de Cabo R, Ingram DK, Longo DL, Wolkow CA (2007) Comparative approaches to facilitate the discovery of prolongevity interventions: effects of tocopherols on lifespan of three invertebrate species. Mech Ageing Dev 128:222–226PubMedCrossRefGoogle Scholar
  82. Zou S, Carey JR, Liedo P, Ingram DK, Yu B, Ghaedian R (2010) Prolongevity effects of an oregano and cranberry extract are diet dependent in the Mexican fruit fly (Anastrepha ludens). J Gerontol A Biol Sci Med Sci 65:41–50PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesClemson UniversityClemsonUSA
  2. 2.Institute for Engaged AgingClemson UniversityClemsonUSA
  3. 3.Laboratory of Experimental GerontologyNational Institute on AgingBaltimoreUSA
  4. 4.Clemson UniversityClemsonUSA

Personalised recommendations