Advertisement

AGE

, Volume 35, Issue 4, pp 1133–1142 | Cite as

Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila

  • Li-Rong Shen
  • Fa Xiao
  • Peng Yuan
  • Ying Chen
  • Qi-Kang Gao
  • Laurence D. Parnell
  • Mohsen Meydani
  • Jose M. Ordovas
  • Duo Li
  • Chao-Qiang LaiEmail author
Article

Abstract

Curcumin is a polyphenolic bioactive compound in turmeric. We examined if antioxidant effects of curcumin are associated with lifespan extension in Drosophila. In this experiment, females and males of Drosophila were fed diets either containing no curcumin (C0) or supplemented with curcumin at 0.5 (C1) and 1.0 (C2) mg/g of diet. The levels of malondialdehyde (MDA), enzyme activity of superoxide dismutase (SOD), and expression of seven age-related genes in females and males were analyzed. We found that C1 and C2 increased mean lifespan by 6.2 % and 25.8 % in females, and by 15.5 % and 12.6 % in males, respectively. Meanwhile, C1 and C2 significantly decreased MDA levels and increased SOD activity in both genders. Diets C1 in females and C2 in males are effective in extending mean lifespan and improving levels of two physiological and biochemical measures related to aging in Drosophila. Lifespan extension of curcumin in Drosophila was associated with the up-regulation of Mn-SOD and CuZn-SOD genes, and the down-regulation of dInR, ATTD, Def, CecB, and DptB genes. The present results suggest that curcumin increases mean lifespan of Drosophila via regulating gene expression of the key enzyme SOD and reducing accumulation of MDA and lipid peroxidation. This study provided new insights for understanding the anti-aging mechanism of curcumin in Drosophila.

Keywords

Curcumin Lifespan MDA SOD Age-related genes 

Supplementary material

11357_2012_9438_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)

References

  1. Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Kazeminejad B (2010) Neuroprotective effects of the polyphenolic antioxidant agent, curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat. Pharmacol Biochem Behav 96(4):378–385. doi: 10.1016/j.pbb.2010.06.009 PubMedCrossRefGoogle Scholar
  2. Bala K, Tripathy BC, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7(2):81–89. doi: 10.1007/s10522-006-6495-x PubMedCrossRefGoogle Scholar
  3. Barik A, Mishra B, Shen L, Mohan H, Kadam RM, Dutta S, Zhang HY, Priyadarsini KI (2005) Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radic Biol Med 39(6):811–822. doi: 10.1016/j.freeradbiomed.2005.05.005 PubMedCrossRefGoogle Scholar
  4. Beever CS, Chen L, Liu L, Luo Y, Webster NJG (2009) Curcumin disrupts the mammalian target of rapamycin-raptor complex. Cancer Res 2009(69):1000–1008. doi: 10.1158 /0008 -5472.CAN-08-2367 CrossRefGoogle Scholar
  5. Calabrese V (2007) Redox regulation of celular stress response in ageing and neurodegenerative disorders: role of vitagenes and modulation by antioxidants. Free Radic Res 41:S10–S10. doi: 10.1007/s11064-006-9203-y Google Scholar
  6. Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70(2):616–620. doi: 10.1016/0003-2697(76)90488-7 PubMedCrossRefGoogle Scholar
  7. Govindarajan VS (1980) Turmeric—chemistry, technology, and quality. Crc Crit Rev Food Sci 12(3):199–301. doi: 10.1080/10408398009527278 CrossRefGoogle Scholar
  8. Harman D (1992) Free-radical theory of aging. Mutat Res 275(3-6):257–266. doi: 10.1016/0921-8734(92)90030-S PubMedCrossRefGoogle Scholar
  9. Jovanovic SV, Steenken S, Boone CW, Simic MG (1999) H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc 121(41):9677–9681. doi: 10.1021/ja991446m CrossRefGoogle Scholar
  10. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(19):1789–1789. doi: 10.1016/j.cub.2004.09.057 CrossRefGoogle Scholar
  11. Lee KS, Lee BS, Semnnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13(5):561–570. doi: 10.1089/rej.2010.1031 PubMedCrossRefGoogle Scholar
  12. Lim GP, Chu T, Yang FS, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21(21):8370–8377PubMedGoogle Scholar
  13. Martin I, Grotewiel MS (2006) Oxidative damage and age-related functional declines. Mech Ageing Dev 127(5):411–423. doi: 10.1016/j.mad.2006.01.008 PubMedCrossRefGoogle Scholar
  14. Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595. doi: 10.1016/j.febslet.2011.10.048 PubMedCrossRefGoogle Scholar
  15. Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28(8):1303–1312. doi: 10.1016/S0891-5849(00)00294-X PubMedCrossRefGoogle Scholar
  16. Naidu KA, Thippeswamy NB (2002) Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem 229(1-2):19–23PubMedCrossRefGoogle Scholar
  17. Nair U, Bartsch H, Nair J (2007) Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med 43(8):1109–1120. doi: 10.1016/j.freeradbiomed.2007.07.012 PubMedCrossRefGoogle Scholar
  18. Patro BS, Rele S, Chintalwar GJ, Chattopadhyay S, Adhikari S, Mukherjee T (2002) Protective activities of some phenolic 1,3-diketones against lipid peroxidation: possible involvement of the 1,3-diketone moiety. ChemBioChem 3(4):364–370. doi:10.1002/1439-7633 (20020 402)3:4<364:AID-CBIC364>3.0.CO;2-SPubMedCrossRefGoogle Scholar
  19. Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G (2008) Benefits from dietary polyphenols for brain aging and Alzheimer's disease. Neurochem Res 33(12):2390–2400. doi: 10.1007/s11064-008-9696-7 PubMedCrossRefGoogle Scholar
  20. Salvioli S, Sikora E, Cooper EL, Franceschi C (2007) Curcumin in cell death processes: a challenge for CAM of age-related pathologies. Evid Based Complement Alternat Med 4(2):181–190. doi: 10.1093/ecam/nem043 PubMedCrossRefGoogle Scholar
  21. Schaffer M, Schaffer PM, Zidan J, Bar Sela G (2011) Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 14(6):588–597PubMedCrossRefGoogle Scholar
  22. Schiborr C, Eckert GP, Rimbach G, Frank J (2010) A validated method for the quantification of curcumin in plasma and brain tissue by fast narrow-bore high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 397(5):1917–1925. doi: 10.1007/s00216-010-3719-3 PubMedCrossRefGoogle Scholar
  23. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968. doi: 10.1016/j.ejca.2005.05.009 PubMedCrossRefGoogle Scholar
  24. Sikora E, Bielak-Zmijewska A, Mosieniak G, Piwocka K (2010) The promise of slow down ageing may come from curcumin. Curr Pharm Des 16(7):884–892. doi: 10.2174/ 138161210790883507 PubMedCrossRefGoogle Scholar
  25. Suckow BK, Suckow MA (2006) Lifespan extension by the antioxidant curcumin in Drosophila. Int J Biomed Sci 2(4):401–404Google Scholar
  26. Surh YJ, Chun KS (2007) Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 595:149–172. doi: 10.1007/978-0-387-46401-55 PubMedCrossRefGoogle Scholar
  27. Troen AM, French EE, Roberts J, Selhub J, Ordovas JM, Parnell LD, Lai CQ (2007) Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. Age 29:29–39. doi: 10.1007/s11357-006-9018-4 PubMedCrossRefGoogle Scholar
  28. Utley HG, Bernheim F, Hochstein P (1967) Effect of sulfhydryl reagent on peroxidation in microsome. Arch Biochem Biophys 118(1):29–32. doi: 10.1016/0003-9861(67)90273-1 CrossRefGoogle Scholar
  29. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. doi: 10.1016/j.cbi.2005.12.009 PubMedCrossRefGoogle Scholar
  30. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39(1):44–84. doi: 10.1016/j.biocel.2006.07.001 CrossRefGoogle Scholar
  31. Wei QY, Chen WF, Zhou B, Yang L, Liu ZL (2006) Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Bba-Gen Subj 1760(1):70–77. doi: 10.1016/j.bbagen.2005.09.008 CrossRefGoogle Scholar

Copyright information

© American Aging Association (outside the USA) 2012

Authors and Affiliations

  • Li-Rong Shen
    • 1
    • 2
  • Fa Xiao
    • 1
  • Peng Yuan
    • 1
  • Ying Chen
    • 1
  • Qi-Kang Gao
    • 1
  • Laurence D. Parnell
    • 2
  • Mohsen Meydani
    • 3
  • Jose M. Ordovas
    • 2
  • Duo Li
    • 1
  • Chao-Qiang Lai
    • 2
    Email author
  1. 1.Department of Food Science and NutritionZhejiang UniversityHangzhouChina
  2. 2.Nutrition and Genomics Lab, Jean Mayer-USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA
  3. 3.Vascular Biology Laboratory, Jean Mayer-USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA

Personalised recommendations