, Volume 35, Issue 4, pp 1277–1285 | Cite as

Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans

  • R. BravoEmail author
  • S. Matito
  • J. Cubero
  • S. D. Paredes
  • L. Franco
  • M. Rivero
  • A. B. Rodríguez
  • C. Barriga


Melatonin and serotonin rhythms, which exhibit a close association with the endogenous circadian component of sleep, are attenuated with increasing age. This decrease seems to be linked to sleep alterations in the elderly. Chrononutrition is a field of chronobiology that establishes the principle of consuming foodstuffs at times of the day when they are more useful for health, improving, therefore, biorhythms and physical performance. Our aim was to analyze whether the consumption of cereals enriched with tryptophan, the precursor of both serotonin and melatonin, may help in the reconsolidation of the sleep/wake cycle and counteract depression and anxiety in 35 middle-aged/elderly (aged 55–75 year) volunteers in a simple blind assay. Data were collected for 3 weeks according to the following schedule: The control week participants consumed standard cereals (22.5 mg tryptophan in 30 g cereals per dose) at breakfast and dinner; for the treatment week, cereals enriched with a higher dose of tryptophan (60 mg tryptophan in 30 g cereals per dose) were eaten at both breakfast and dinner; the posttreatment week volunteers consumed their usual diet. Each participant wore a wrist actimeter that logged activity during the whole experiment. Urine was collected to analyze melatonin and serotonin urinary metabolites and to measure total antioxidant capacity. The consumption of cereals containing the higher dose in tryptophan increased sleep efficiency, actual sleep time, immobile time, and decreased total nocturnal activity, sleep fragmentation index, and sleep latency. Urinary 6-sulfatoxymelatonin, 5-hydroxyindoleacetic acid levels, and urinary total antioxidant capacity also increased respectively after tryptophan-enriched cereal ingestion as well as improving anxiety and depression symptoms. Cereals enriched with tryptophan may be useful as a chrononutrition tool for alterations in the sleep/wake cycle due to age.


Chrononutrition Actigraphy Elderly Tryptophan Serotonin Melatonin 



This work has been supported by ORDESA S.L. Laboratories. S.D. Paredes was a beneficiary of a grant by Junta de Extremadura—Fondo Social Europeo (REI09009).


  1. Adamec O, Domingues A, Paiva T, Sanches JM (2010) Statistical characterization of actigraphy data during sleep and wakefulness states. Conf Proc IEEE Eng Med Biol Soc 2010:2342–2345PubMedGoogle Scholar
  2. Ancoli-Israel S, Poceta JS, Stepnowsky C, Martín J, Gehrman P (1997) Identifiaction and treatment of sleep problems in the elderly. Sleep Med 1(1):3–17CrossRefGoogle Scholar
  3. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP (2003) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26(3):342–392PubMedGoogle Scholar
  4. Aparicio S, Garau C, Nicolau MC, Rivero M, Rial RV (2007) Chrononutrition: use of dissociated day/night formulas to improve the development of the wake-sleep rhythms. Effects of tryptophan. Nutr Neurosci 10(3–4):137–143PubMedCrossRefGoogle Scholar
  5. Arnulf I, Quintin P, Alvarez J, Vigil L, Touitou Y, Lebre A, Bellenger A, Varoquaux O, Derenne J, Allilaire J, Benkelfat C, Leboyer M (2002) Mid-morning tryptophan depletiond elays REM sleep onset in healthy subjects. Neuropsychopharmacol 27(5):843–851Google Scholar
  6. Asplund R (2000) Sleep, health and visual impairment in the elderly. Arch Gerontol Geriatr 30(1):7–15Google Scholar
  7. Barnard AR, Nolan PM (2008) When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PloS Genet 4(5):e1000040PubMedCrossRefGoogle Scholar
  8. Bourne RS, Mills GH, Minelli C (2008) Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomized trial. Crit Care 12(2):R52PubMedCrossRefGoogle Scholar
  9. Bubenik GA, Konturek SJ (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62(1):13–19PubMedGoogle Scholar
  10. Canizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteome. doi: 10.1016/j.jprot.2011.06.005
  11. Castro-Silva C, Bruin VM, Cunha GM, Nunes DM, Medeiros CA, Bruin PF (2010) Melatonin improves sleep and reduces nitrite in the exhaled breath condensate in cystic fibrosis—a randomized, double-blind placebo-controlled study. J Pineal Res 48(1):65–71PubMedCrossRefGoogle Scholar
  12. Cubero J, Valero V, Sánchez J, Rivero M, Parvez H, Rodríguez AB, Barriga C (2005) The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoximelatonin and sleep in newborn. Neuroendocrinol Lett 26(6):657–661PubMedGoogle Scholar
  13. Cubero J, Narciso D, Terrón MP, Rial R, Esteban S, Rivero M, Parvez H, Rodríguez AB, Barriga C (2007) Chrononutrition applied to formula milks to consolidate infants’ sleep/wake cycle. Neuroendocrinol Lett 28(4):360–366PubMedGoogle Scholar
  14. Cubero J, Chanclón B, Sánchez S, Rivero M, Rodríguez AB, Barriga C (2009) Improving the quality of infant sleep through the conclusion at supper of cereals enriched with tryptophan, adenosine-5′-phosphate, and uridine-5′-phosphate. Nutr Neurosci. doi: 10.1179/147683009X423490
  15. Cubero J, Otalora BB, Bravo R, Sánchez CL, Franco L, Uguz AC, Rodríguez AB, Barriga C (2011) Distribution of 5-HT receptors in the mammalian brain. Trends Cell Mol Biol 6:41–46Google Scholar
  16. Delgado J, Terrón MP, Garrido M, Pariente JA, Barriga C, Rodríguez AB, Paredes SD (2012) A cherry nutraceutical modulates melatonin, serotonin, corticosterone, and total antioxidant capacity levels: effect on ageing and chronotype. J Appl Biomed. doi: 10.2478/v10136-011-0016-1
  17. Dijk DJ, Duffy JF, Czeisler CA (2000) Contribution of circadian physiology and sleep homesotasis to age-related changes in human sleep. Chronobiol Int 17(3):285–311PubMedCrossRefGoogle Scholar
  18. Duncan MJ, Congleton MR (2010) Neural mechanisms mediating circadian phase resetting by activation of 5-HT7 receptors in the dorsal raphe: roles of GABAergic and glutamatergic neurotransmission. Brain Res 1366:110–119PubMedCrossRefGoogle Scholar
  19. Faraut B, Boudjetia KZ, Vanhame L, Kerkhofs M (2011) Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med Rev 16(2):137–149. doi: 10.1016/m.smrv.2011.05.001 PubMedCrossRefGoogle Scholar
  20. Ferrari E, Magri F (2008) Role of neuroendocrine pathways in cognitive decline during aging. Ageing Res Rev 7:225–233PubMedCrossRefGoogle Scholar
  21. Franco L, Sánchez CL, Bravo R, Rodríguez AB, Barriga C, Cubero J (2012) The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol Hung, in pressGoogle Scholar
  22. Garau C, Aparicio S, Rial RV, Nicolau MC, Esteban S (2006) Age related changes in the activity-rest circadian rhythms and c-fos expression of ringdoves with aging. Effects of tryptophan intake. Exp Gerontol 41(4):430–438PubMedCrossRefGoogle Scholar
  23. Garrido M, Espino J, González-Gómez D, Lozano M, Cubero J, Toribio-Delgado AF, Maynar-Mariño JI, Terrón MP, Muñoz JL, Pariente JA, Barriga C, Paredes SD, Rodríguez AB (2009) A nutraceutical product base don Jerte Valley cherries improves sleep and augments the antioxidant status in humans. E-SPEN J 4:e321–e323CrossRefGoogle Scholar
  24. Garrido M, Paredes SD, Cubero J, Lozano M, Toribio-Delgado AF, Muñoz JL, Reiter RJ, Barriga C, Rodríguez AB (2010) Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J Gerontol A Biol Sci Med Sci 65(9):909–914. doi: 10.1096/Gerona/glq099 PubMedCrossRefGoogle Scholar
  25. Gilliam T (2009) Understanding primary insomnia in older people. Nurs Older People 21(3):30–33Google Scholar
  26. González-Flores D, Gamero E, Garrido M, Ramírez R, Moreno D, Delgado J, Valdés E, Barriga C, Rodríguez AB, Paredes SD (2012) Urinary 6-sulfatoxymelatonin and total antioxidant capacity increase after the intake of a grape juice cv. Tempranillo stabilized with HHP. Food Funct 3(1):34–39PubMedCrossRefGoogle Scholar
  27. Hajak G, Huether G, Blanke J, Freyer B, Poeggeler P, Reimer A, Rodenbeck A, Schulz-Varszegi A, Ruether M (1991) The influence of intravenous l-tryptophan on plasma melatonin and sleep in men. Pharmacopsychiatry 24(1):17–20PubMedCrossRefGoogle Scholar
  28. Huang Y, Liu R, Wang Q, Van Someren EWJ, Xu H, Zhou J (2002) Age-associated difference in circadian sleep-wake and rest-activity rhythms. Physiol Behav 76:597–603PubMedCrossRefGoogle Scholar
  29. Hussain AM, Mitra AK (2004) Effect of reactive oxygen species on the metabolism of tryptophan in rat brain: influence of age. Mol Cell Biochem 258(1–2):145–153PubMedCrossRefGoogle Scholar
  30. Hutt HJ, Bennerscheidt P, Thiel B, Arand M (2010) Immunosenescence and vaccinations in the elderly. Med Klin (MUnich) 105(11):802–7Google Scholar
  31. Ironside S, Davidson F, Corkum P (2010) Circadian motor activity affected by stimulant medication in children with attention-deficit/hyperactivity disorder. J Sleep Res 19(4):546–541PubMedCrossRefGoogle Scholar
  32. Jung-Hynes B, Reiter RJ, Ahmad N (2010) Sirtuins, melatonin and circadian rhythm: building a bridge between aging and cancer. J Pineal Res 48(1):9–19PubMedCrossRefGoogle Scholar
  33. Kachi Y, Ohwaki K, Yano E (2012) Association of sleep duration with untreated diabetes in Japanese men. Sleep Med 13(3):307–309PubMedCrossRefGoogle Scholar
  34. Kotronoulas G, Stamatakis A, Stylianopoulou F (2009) Hormones, hormonal agents, and neuropeptides involved in the neuroendocrine regulation of sleep in humans. Hormones 8(4):232–248PubMedGoogle Scholar
  35. Lam RW (2008) Adressing circadian rhythm disturbances in depressed patients. J Psychopharmacol 22(7):13–18PubMedCrossRefGoogle Scholar
  36. Mammucari C, Rizzuto R (2010) Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 131:536–543PubMedCrossRefGoogle Scholar
  37. Maquet P, Matarazzo L, Foret A, Mascetti L, Bourdiec AS, Muto V (2010) Contribution of sleep to learning and memory. Biol Aujourdhui 204(2):139–143PubMedCrossRefGoogle Scholar
  38. Markus CR, Jonkman LM, Lammers JHCM, Deut NEP, Messer MH, Nienke R (2005) Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am J Clin Nutr 81:1026–1033PubMedGoogle Scholar
  39. Martin JL, Hakim AD (2011) Wrist Actigraphy. Chest 139(6):1514–1527Google Scholar
  40. Meier J, Sturm A (2009) The intestinal epithelial barrier: does it become impaired with age? Dig Dis 27(3):240–245PubMedCrossRefGoogle Scholar
  41. Mendelsohn D, Riedel WJ, Sambeth A (2009) Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33:926–952PubMedCrossRefGoogle Scholar
  42. Meydani M (2001) Nutrition interventions in aging and age associated disease. Ann N Y Acad Sci 928:226–235Google Scholar
  43. Mitchell ES, Slettenaar M, Quadt F, Giesbrecht T, Kloek J, Gerhardt C, Bot A, Eliander A, Wiseman S (2011) Effect of hydrolysed egg protein on brain tryptophan availability. Br J Nutr 105(4):611–617PubMedCrossRefGoogle Scholar
  44. Mondragón-Rezola E, Arratíbel-Echarren I, Ruiz-Martínez J, Martí-Massó JF (2010) Sleep disorders in Parkinson’s disease: insomnia and sleep fragmentation, daytime hypersomnia, alterations to the circadian rhythm and sleep apnea syndrome. Rev Neurol 8(50):21–26Google Scholar
  45. Monjan AA (2010) Perspective on sleep and aging. Front Neurol. doi: 10.3389/fneur.2010.00124 Google Scholar
  46. Most EIS, Scheltens P, Van Someren EJW (2010) Prevention of depression and sleep disturbances in elderly with memory-problems by activation of the biological clock with light—a randomized clinical trial. Trials 11:19PubMedCrossRefGoogle Scholar
  47. Ortega E, García JJ, de la Fuente M (2000) Ageing modulates some aspects of the non-specific immune response of murine macrophages and lymphocytes. Exp Physiol 85(5):519–525PubMedCrossRefGoogle Scholar
  48. Paredes SD, Terrón MP, Valero V, Cubero J, Barriga C, Reiter RJ, Rodríguez AB (2007) Tryptophan increases nocturnal rest and affects melatonin and serotonin serum levels in old ringdove. Physiol Behav 90:576–582, Pergamon-Elsevier Science Ltd. (I.S.S.N.: 0031–9384)PubMedCrossRefGoogle Scholar
  49. Paredes SD, Bejarano I, Terrón MP, Barriga C, Reiter RJ, Rodríguez AB (2009a) Melatonin and tryptophan counteract lipid peroxidation and modúlate superoxide dismutase activity in ringdove heterophils in vivo. Effect of antigen-induced activation and age. Age 31:179–188PubMedCrossRefGoogle Scholar
  50. Paredes SD, Marchena AM, Bejarano I, Espino E, Barriga C, Vial RV, Reiter RJ, Rodríguez AB (2009b) Melatonin and tryptophan affect the activity-rest circadian rhythm, core and peripheral temperatures, and interleukin levels in the ringdove: changes with age. J Gerontol A Biol Sci Med Sci 3:340–350CrossRefGoogle Scholar
  51. Porter RJ, Mulder RT, Joyce PR, Luty SE (2005) Trytophan and tyrosine availability and response to antidepressant in major depression. J Affect Disord 86:129–134PubMedCrossRefGoogle Scholar
  52. Qureshi GA, Parvez SH (2007) Oxidative stress and neurodegenerative disorders. Elsevier, OxfordGoogle Scholar
  53. Reiter RJ, Manchester LC, Tan DX (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21(9):920–924PubMedCrossRefGoogle Scholar
  54. Reiter RJ, Tan DX, Manchester LC, Terrón MP, Flores LJ, Koppisepi S (2007) Medical implications of melatonin: receptor-mediated and receptor independent actions. Adv Med Sci 52:11–28PubMedGoogle Scholar
  55. Reynolds AC, Banks S (2010) Total sleep deprivation, chronic sleep restriction and sleep disruption. Prog Brain Res 185:91–103PubMedCrossRefGoogle Scholar
  56. Rizwan M, Rodríguez-Blanco I, Harbottle A, Birch-Machin MA, Watson RE, Rhodes LE (2011) Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Br J Dermatol 164(1):154–162PubMedCrossRefGoogle Scholar
  57. Russell T, Duntley S (2011) Sleep disordered breathing in the elderly. Am J Med 124(12):1123–1126PubMedCrossRefGoogle Scholar
  58. Sánchez S, Sánchez CL, Paredes SD, Barriga C, Rodríguez AB (2008a) Circadian levels of serotonin in plasma and brain after oral administration of tryptophan in rats. Basic Clin Pharmacol 104:52–59Google Scholar
  59. Sánchez S, Sánchez CL, Paredes SD, Rodríguez AB, Barriga C (2008b) The effect of tryptophan administration on the circadian rhytms of melatonin in plasma and the pineal gland of rats. J Appl Biomed 6:177–186Google Scholar
  60. Sánchez S, Sánchez C, Paredes SD, Cubero J, Rodríguez AB, Barriga C (2008c) Circadian variations of serotonin in plasma and different brain regions of rats. Mol Cell Biochem 317(1–2):105–111. doi: 10.1007/s11010-008-9836-z PubMedCrossRefGoogle Scholar
  61. Sánchez CL, Franco L, Bravo R, Rubio C, Rodríguez AB, Barriga C, Cubero J (2010) Cerveza y salud, beneficios en el sueño. Nutrición Comunitaria 16(3):160–163CrossRefGoogle Scholar
  62. Sanchez-Barceló EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 17(19):2070–2095PubMedCrossRefGoogle Scholar
  63. Sarris J, Byrne GJ (2011) A systematic review of insomnia and complementary medicine. Sleep Med Rev 15:99–106PubMedCrossRefGoogle Scholar
  64. Shankar SK (2010) Biology of aging brain. J Pathol MIcrobiol 53:595–604CrossRefGoogle Scholar
  65. Silber BY, Schmitt JAJ (2009) Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. doi: 10.1016/j.neubiorev.2009.08.005
  66. Soria V, Urretavizcaya M (2009) Circadian rhythms and depression. Actas Esp Psiquiatr 37(4):222–232PubMedGoogle Scholar
  67. Spielberger CD, Gorsuch RL, Lushene RE (2008) STAI. Cuestionario de Ansiedad Estado/Rasgo. TEA ediciones, MadridGoogle Scholar
  68. Steer RA, Rissmiller DJ (2000) Beck AT: use of the Beck Depression Inventory-II with depressed geriatric inpatients. Behav Res Ther 38:311–318PubMedCrossRefGoogle Scholar
  69. Tang JP, Melethil S (1995) Effect of aging on the kinetics of blood–brain barrier uptake of tryptophan in rats. Pharm Res 12(7):1085–1091PubMedCrossRefGoogle Scholar
  70. Telles-Correia D, Barbosa A (2009) Anxiety and depression in medicine: models and measurement. Acta Med Port 22(1):89–98PubMedGoogle Scholar
  71. Tocker L, Amar S, Bersudsky Y, Benjamin J, Klein E, Agam G (2010) The biology of tryptophan depletion and mood disorders. Isr J Psychiatry Relat Sci 47(1):46–55Google Scholar
  72. Tsou M (2011) Association between sleep duration and health outcome in elderly Taiwanese. Int J Gerontol 5:200–205CrossRefGoogle Scholar
  73. Van Someren EJW (2000) Circadian and sleep disturbances in the elderly. Exp Gerontol 35:1229–1237PubMedCrossRefGoogle Scholar
  74. Velayos JL (2009) Medicina del Sueño. Enfoque disciplinario. Médica Panamericana, MadridGoogle Scholar
  75. Witting W, Kwa IH, Eikelenboom P, Mirmiram M, Swaab DF (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry 27:563–572PubMedCrossRefGoogle Scholar
  76. Woudstra T, Thomson ABR (2002) Nutrient absorption and intestinal adaptation with ageing. Best Pract Res Clin Gastroenterol 16(1):1–15PubMedCrossRefGoogle Scholar
  77. Yao K, Fang J, Yin YL, Feng ZM, Tang ZR, Wu G (2011) Tryptophan metabolism in animals: important roles in nutrition and health. Front Biosci (Schol Ed) 1(3):386–397Google Scholar
  78. Yiengprugsawan V, Banwell C, Seubsman SA, Sleigh AC (2012) Short sleep and obesity in a large national cohort of Thai adults. BMJ Open 2(1):e000561PubMedCrossRefGoogle Scholar
  79. Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU (2001) Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 86(10):4727–4730PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2012

Authors and Affiliations

  • R. Bravo
    • 1
    • 6
    Email author
  • S. Matito
    • 2
  • J. Cubero
    • 1
    • 3
  • S. D. Paredes
    • 4
  • L. Franco
    • 1
  • M. Rivero
    • 5
  • A. B. Rodríguez
    • 1
  • C. Barriga
    • 1
  1. 1.Department of Physiology “Neuroimmunophysiology and Chrononutrition Research Group”, Faculty of ScienceUniversity of Extremadura (UEx)BadajozSpain
  2. 2.Health Services of Extremadura (SES)BadajozSpain
  3. 3.Science Education Area, Health Education LaboratoryUniversity of Extremadura (UEx)BadajozSpain
  4. 4.Department of Physiology, School of MedicineComplutense University of MadridMadridSpain
  5. 5.Scientific DivisionORDESA S.L. LaboratoriesBarcelonaSpain
  6. 6.Department of Physiology, Faculty of ScienceUniversity of Extremadura (UEx)BadajozSpain

Personalised recommendations