, Volume 35, Issue 3, pp 905–920 | Cite as

Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training

  • Carissa J. Murrell
  • James D. Cotter
  • Kate N. Thomas
  • Samuel J. E. Lucas
  • Michael J. A. Williams
  • Philip N. Ainslie


Chronic reductions in cerebral blood flow (CBF) and cerebrovascular reactivity to CO2 are risk factors for cerebrovascular disease. Higher aerobic fitness is associated with higher CBF at any age; however, whether CBF or reactivity can be elevated following an exercise training intervention in healthy individuals is unknown. The aim of this study was to assess the effect of exercise training on CBF and cerebrovascular reactivity at rest and during exercise in young and older individuals. Ten young (23 ± 5 years; body mass index (BMI), 26 ± 3 kg m−2; \( {\mathop{V}\limits^{ \cdot }{_{\text{O2}}}}\max \), 35 ± 5 ml kg−1 min−1) and 10 older (63 ± 5 years; BMI, 25 ± 3.0 kg m−2; \( {\mathop{V}\limits^{ \cdot }{_{\text{O2}}}}\max \), 26 ± 4 ml kg-1 min−1) previously sedentary individuals breathed 5 % CO2 for 3 min at rest and during steady-state cycling exercise (30 and 70 % heart rate range (HRR)) prior to and following a 12-week aerobic exercise intervention. Effects of training on middle cerebral artery blood velocity (MCAv) at rest were unclear in both age groups. The absolute MCAv response to exercise was greater in the young (9 and 9 cm s−1 (30 and 70 % HRR, respectively) vs. 5 and 4 cm s−1 (older), P < 0.05) and was similar following training. Cerebrovascular reactivity was elevated following the 12-week training at rest (2.87 ± 0.76 vs. 2.54 ± 1.12 cm s−1 mm Hg−1, P = 0.01) and during exercise, irrespective of age. The finding of a training-induced elevation in cerebrovascular reactivity provides further support for exercise as a preventative tool in cerebrovascular and neurological disease with ageing.


Ageing Exercise training Fitness Cerebral blood flow CO2 reactivity 


  1. Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296(5):R1473–95CrossRefPubMedGoogle Scholar
  2. Ainslie PN et al (2005) Differential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans. J Physiol 566(2):613–24CrossRefPubMedCentralPubMedGoogle Scholar
  3. Ainslie PN et al (2007) Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: relation to endothelial function. Exp Physiol 92(4):769–77CrossRefPubMedGoogle Scholar
  4. Ainslie PN et al (2008) Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol 586(16):4005–10CrossRefPubMedCentralPubMedGoogle Scholar
  5. Black JE et al (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87(14):5568–72CrossRefPubMedCentralPubMedGoogle Scholar
  6. Boutcher SH, Stein P (1995) Association between heart rate variability and training response in sedentary middle-aged men. Eur J Appl Physiol Occup Physiol 70(1):75–80CrossRefPubMedGoogle Scholar
  7. Buijs PC et al (1998) Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 209(3):667–74PubMedGoogle Scholar
  8. Clarkson P et al (1999) Exercise training enhances endothelial function in young men. J Am Coll Cardiol 33(5):1379–85CrossRefPubMedGoogle Scholar
  9. Colcombe SJ et al (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 58(2):M176–180CrossRefGoogle Scholar
  10. Colcombe SJ et al (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61(11):1166–70CrossRefPubMedGoogle Scholar
  11. Davis SM et al (1983) Cerebral blood flow and cerebrovascular CO2 reactivity in stroke-age normal controls. Neurology 33(4):391–9CrossRefPubMedGoogle Scholar
  12. de la Torre JC (2010) Vascular risk factor detection and control may prevent Alzheimer's disease. Ageing Res Rev 9(3):218–25CrossRefPubMedGoogle Scholar
  13. Demirkaya S et al (2008) Normal blood flow velocities of basal cerebral arteries decrease with advancing age: a transcranial Doppler sonography study. Tohoku J Exp Med 214(2):145–9CrossRefPubMedGoogle Scholar
  14. Ding YH et al (2006) Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovas Res 3(1):15–23CrossRefGoogle Scholar
  15. Endres M et al (2003) Mechanisms of stroke protection by physical activity. Ann Neurol 54(5):582–90CrossRefPubMedGoogle Scholar
  16. Fisher JP et al (2008) Regulation of middle cerebral artery blood velocity during dynamic exercise in humans: influence of aging. J Appl Physiol 105(1):266–73CrossRefPubMedGoogle Scholar
  17. Galvin SD et al (2010) Effects of age and coronary artery disease on cerebrovascular reactivity to carbon dioxide in humans. Anaesth Intensive Care 38(4):710–7PubMedGoogle Scholar
  18. Gertz K et al (2006) Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res 99(10):1132–40CrossRefPubMedGoogle Scholar
  19. Green DJ et al (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561(Pt 1):1–25CrossRefPubMedCentralPubMedGoogle Scholar
  20. Grolimund P, Seiler RW (1988) Age dependence of the flow velocity in the basal cerebral arteries—a transcranial Doppler ultrasound study. Ultrasound Med Biol 14(3):191–8CrossRefPubMedGoogle Scholar
  21. Gur AY, Bova I, Bornstein NM (1996) Is impaired cerebral vasomotor reactivity a predictive factor of stroke in asymptomatic patients? Stroke 27(12):2188–90CrossRefPubMedGoogle Scholar
  22. Heckmann JG et al (2003) Delayed cerebrovascular autoregulatory response to ergometer exercise in normotensive elderly humans. Cerebrovas Dis 16(4):423–9CrossRefGoogle Scholar
  23. Hellstrom G et al (1996) Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol 81(1):413–8PubMedGoogle Scholar
  24. Hooker SP et al (2008) Cardiorespiratory fitness as a predictor of fatal and nonfatal stroke in asymptomatic women and men. Stroke 39(11):2950–7CrossRefPubMedGoogle Scholar
  25. Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30(1):1–15CrossRefPubMedGoogle Scholar
  26. Ito H et al (2002) Effect of aging on cerebral vascular response to PaCO2 changes in humans as measured by positron emission tomography. J Cereb Blood Flow Metab 22(8):997–1003CrossRefPubMedGoogle Scholar
  27. Ivey FM et al (2011) Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors. Stroke 42(7):1994–2000CrossRefPubMedGoogle Scholar
  28. Jorgensen LG et al (1992) Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans. J Appl Physiol 72(3):1123–32PubMedGoogle Scholar
  29. Kastrup A et al (1998) Changes of cerebrovascular CO2 reactivity during normal aging. Stroke 29(7):1311–4CrossRefPubMedGoogle Scholar
  30. Kingwell BA et al (1997) Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol Heart Circ Physiol 272(3 Pt 2):H1070–7Google Scholar
  31. Krejza J et al (1999) Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol 172(1):213–8CrossRefPubMedGoogle Scholar
  32. Lavi S et al (2006) Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction. Am J Physiol Heart Circ Physiol 291(4):H1856–61CrossRefPubMedGoogle Scholar
  33. Lee IM, Paffenbarger RS Jr (1998) Physical activity and stroke incidence: the Harvard Alumni Health Study. Stroke 29(10):2049–54CrossRefPubMedGoogle Scholar
  34. Linkis P et al (1995) Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol 78(1):12–6PubMedGoogle Scholar
  35. Liu Y et al. (2011) Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn Reson MedGoogle Scholar
  36. Llorens-Martin M, Torres-Aleman I, Trejo JL (2010) Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour. Mol Cell Neurosci 44(2):109–17CrossRefPubMedGoogle Scholar
  37. Markus HS (2004) Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry 75(3):353–61CrossRefPubMedCentralPubMedGoogle Scholar
  38. Markus H, Cullinane M (2001) Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 124(Pt 3):457–67CrossRefPubMedGoogle Scholar
  39. Marsden KR et al. (2011) Aging blunts hyperventilation-induced hypocapnia and reduction in cerebral blood flow velocity during maximal exercise. Age (Dordr)Google Scholar
  40. Moraine JJ et al (1993) Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol 67(1):35–8CrossRefPubMedGoogle Scholar
  41. Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107(5):1370–80CrossRefPubMedGoogle Scholar
  42. Ogoh S et al (2005) Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 288(4):H1526–31CrossRefPubMedGoogle Scholar
  43. Ogoh S et al (2008) Interaction between the ventilatory and cerebrovascular responses to hypo- and hypercapnia at rest and during exercise. J Physiol 586(Pt 17):4327–38CrossRefPubMedCentralPubMedGoogle Scholar
  44. Ogoh S, Ainslie PN, Miyamoto T (2009) Onset responses of ventilation and cerebral blood flow to hypercapnia in humans: rest and exercise. J Appl Physiol 106(3):880–6CrossRefPubMedCentralPubMedGoogle Scholar
  45. Peebles K et al (2007) Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2. J Physiol 584(1):347–57CrossRefPubMedCentralPubMedGoogle Scholar
  46. Querido JS, Sheel AW (2007) Regulation of cerebral blood flow during exercise. Sports Med 37(9):765–82CrossRefPubMedGoogle Scholar
  47. Rasmussen P et al (2006) Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol 96(3):299–304CrossRefPubMedGoogle Scholar
  48. Reich T, Rusinek H (1989) Cerebral cortical and white matter reactivity to carbon dioxide. Stroke 20(4):453–7CrossRefPubMedGoogle Scholar
  49. Rhyu IJ et al (2010) Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167(4):1239–48CrossRefPubMedCentralPubMedGoogle Scholar
  50. Schwertfeger N et al (2006) Cerebrovascular reactivity over time course in healthy subjects. J Neurol Sci 249(2):135–9CrossRefPubMedGoogle Scholar
  51. Seifert T et al (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298(2):R372–7CrossRefPubMedGoogle Scholar
  52. Silvestrini M et al (2000) Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 283(16):2122–7CrossRefPubMedGoogle Scholar
  53. Swain RA et al (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117(4):1037–46CrossRefPubMedGoogle Scholar
  54. Thomas KN et al (2009) Initial orthostatic hypotension is unrelated to orthostatic tolerance in healthy young subjects. J Appl Physiol 107(2):506–17CrossRefPubMedGoogle Scholar
  55. Thompson PD et al (2001) The acute versus the chronic response to exercise. Med Sci Sports Exerc 33(6 Suppl):S438–45, discussion S452-3CrossRefPubMedGoogle Scholar
  56. Tinken TM et al (2008) Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol 586(Pt 20):5003–12CrossRefPubMedCentralPubMedGoogle Scholar
  57. Tsuda Y, Hartmann A (1989) Changes in hyperfrontality of cerebral blood flow and carbon dioxide reactivity with age. Stroke 20(12):1667–73CrossRefPubMedGoogle Scholar
  58. Wuyam B et al (1995) Imagination of dynamic exercise produced ventilatory responses which were more apparent in competitive sportsmen. J Physiol 482(Pt 3):713–24PubMedCentralPubMedGoogle Scholar
  59. Yamaguchi F et al (1979) Normal human aging and cerebral vasoconstrictive responses to hypocapnia. J Neurol Sci 44(1):87–94CrossRefPubMedGoogle Scholar
  60. Yamamoto M et al (1980) Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch Neurol 37(8):489–96CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association 2012

Authors and Affiliations

  • Carissa J. Murrell
    • 1
  • James D. Cotter
    • 2
  • Kate N. Thomas
    • 1
  • Samuel J. E. Lucas
    • 1
  • Michael J. A. Williams
    • 3
  • Philip N. Ainslie
    • 4
  1. 1.Department of PhysiologyUniversity of OtagoDunedinNew Zealand
  2. 2.School of Physical EducationUniversity of OtagoDunedinNew Zealand
  3. 3.Department of MedicineUniversity of OtagoDunedinNew Zealand
  4. 4.School of Health and Exercise SciencesUniversity of British ColumbiaKelownaCanada

Personalised recommendations