AGE

, Volume 35, Issue 1, pp 83–101

Insulin receptor signaling mediates APP processing and β-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer’s disease

  • Oliver Stöhr
  • Katharina Schilbach
  • Lorna Moll
  • Moritz M. Hettich
  • Susanna Freude
  • F. Thomas Wunderlich
  • Marianne Ernst
  • Johanna Zemva
  • Jens C. Brüning
  • Wilhelm Krone
  • Michael Udelhoven
  • Markus Schubert
Article

Abstract

In brains from patients with Alzheimer’s disease (AD), expression of insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), and insulin receptor substrate proteins is downregulated. A key step in the pathogenesis of AD is the accumulation of amyloid precursor protein (APP) cleavage products, β-amyloid (Aβ)1-42 and Aβ1–40. Recently, we and others have shown that central IGF-1 resistance reduces Aβ accumulation as well as Aβ toxicity and promotes survival. To define the role of IR in this context, we crossed neuron-specific IR knockout mice (nIR−/−) with Tg2576 mice, a well-established mouse model of an AD-like pathology. Here, we show that neuronal IR deficiency in Tg2576 (nIR−/−Tg2576) mice leads to markedly decreased Aβ burden but does not rescue premature mortality of Tg2576 mice. Analyzing APP C-terminal fragments (CTF) revealed decreased α-/β-CTFs in the brains of nIR−/−Tg2576 mice suggesting decreased APP processing. Cell based experiments showed that inhibition of the PI3-kinase pathway suppresses endosomal APP cleavage and decreases α- as well as β-secretase activity. Deletion of only one copy of the neuronal IGF-1R partially rescues the premature mortality of Tg2576 mice without altering total amyloid load. Analysis of Tg2576 mice expressing either a dominant negative or constitutively active form of forkhead box-O (FoxO)1 did not reveal any alteration of amyloid burden, APP processing and did not rescue premature mortality in these mice. Thus, our findings identified IR signaling as a potent regulator of Aβ accumulation in vivo. But exclusively decreased IGF-1R expression reduces AD-associated mortality independent of β-amyloid accumulation and FoxO1-mediated transcription.

Keywords

Insulin receptor Insulin-like growth factor-1 receptor β-Amyloid Alzheimer’s disease Tg2576 mice 

Supplementary material

11357_2011_9333_MOESM1_ESM.tif (11.4 mb)
High-resolution image (TIFF 11697 kb)
11357_2011_9333_MOESM2_ESM.tif (1.6 mb)
High-resolution image (TIFF 1606 kb)
11357_2011_9333_MOESM3_ESM.tif (2.1 mb)
High-resolution image (TIFF 2198 kb)
11357_2011_9333_MOESM4_ESM.tif (1.6 mb)
High-resolution image (TIFF 1666 kb)
11357_2011_9333_MOESM5_ESM.tif (1.9 mb)
High-resolution image (TIFF 1930 kb)
11357_2011_9333_MOESM6_ESM.tif (2 mb)
High-resolution image (TIFF 2078 kb)
11357_2011_9333_MOESM7_ESM.tif (2.2 mb)
High-resolution image (TIFF 2302 kb)

References

  1. Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA (2007) The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology 132:1434–1446PubMedCrossRefGoogle Scholar
  2. Adlerz L, Holback S, Multhaup G, Iverfeldt K (2007) IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem 282:10203–10209PubMedCrossRefGoogle Scholar
  3. Baird PA, Sadovnick AD (1988) Life expectancy in Down syndrome adults. Lancet 2:1354–1356PubMedCrossRefGoogle Scholar
  4. Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klockener T, Alessi D, Kloppenburg P, Bruning JC (2008) PDK1 deficiency in POMC-expressing cells reveals FoxO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab 7:291–301PubMedCrossRefGoogle Scholar
  5. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125PubMedCrossRefGoogle Scholar
  6. Burgering BM (2008) A brief introduction to FOXOlogy. Oncogene 27:2258–2262PubMedCrossRefGoogle Scholar
  7. Cabrejo L, Guyant-Marechal L, Laquerriere A, Vercelletto M, De la FF, Thomas-Anterion C, Verny C, Letournel F, Pasquier F, Vital A, Checler F, Frebourg T, Campion D, Hannequin D (2006) Phenotype associated with APP duplication in five families. Brain 129:2966–2976PubMedCrossRefGoogle Scholar
  8. Carlson GA, Borchelt DR, Dake A, Turner S, Danielson V, Coffin JD, Eckman C, Meiners J, Nilsen SP, Younkin SG, Hsiao KK (1997) Genetic modification of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice. Hum Mol Genet 6:1951–1959PubMedCrossRefGoogle Scholar
  9. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Morissette C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, George-Hyslop PS, Westaway D (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570PubMedCrossRefGoogle Scholar
  10. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610PubMedCrossRefGoogle Scholar
  11. Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169PubMedCrossRefGoogle Scholar
  12. Cohen E, Du D, Joyce D, Kapernick EA, Volovik Y, Kelly JW, Dillin A (2010) Temporal requirements of insulin/IGF-1 signaling for proteotoxicity protection. Aging Cell 9:126–134PubMedCrossRefGoogle Scholar
  13. Costantini C, Scrable H, Puglielli L (2006) An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. EMBO J 25:1997–2006PubMedCrossRefGoogle Scholar
  14. Craft S (2009) The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66:300–305PubMedCrossRefGoogle Scholar
  15. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:R12–R20PubMedCrossRefGoogle Scholar
  16. Day SM, Strauss DJ, Shavelle RM, Reynolds RJ (2005) Mortality and causes of death in persons with Down syndrome in California. Dev Med Child Neurol 47:171–176PubMedCrossRefGoogle Scholar
  17. de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109PubMedGoogle Scholar
  18. Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190:719–729PubMedCrossRefGoogle Scholar
  19. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438PubMedCrossRefGoogle Scholar
  20. Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum Genet 2:435–462PubMedCrossRefGoogle Scholar
  21. Freude S, Hettich MM, Schumann C, Stohr O, Koch L, Kohler C, Udelhoven M, Leeser U, Muller M, Kubota N, Kadowaki T, Krone W, Schroder H, Bruning JC, Schubert M (2009) Neuronal IGF-1 resistance reduces A{beta} accumulation and protects against premature death in a model of Alzheimer’s disease. FASEB J 23:3315–3324PubMedCrossRefGoogle Scholar
  22. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438PubMedCrossRefGoogle Scholar
  23. Frolich L, Blum-Degen D, Riederer P, Hoyer S (1999) A disturbance in the neuronal insulin receptor signal transduction in sporadic Alzheimer’s disease. Ann N Y Acad Sci 893:290–293PubMedCrossRefGoogle Scholar
  24. Furuyama T, Nakazawa T, Nakano I, Mori N (2000) Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349:629–634PubMedCrossRefGoogle Scholar
  25. Greeve I, Kretzschmar D, Tschape JA, Beyn A, Brellinger C, Schweizer M, Nitsch RM, Reifegerste R (2004) Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci 24:3899–3906PubMedCrossRefGoogle Scholar
  26. Hermon C, Alberman E, Beral V, Swerdlow AJ (2001) Mortality and cancer incidence in persons with Down’s syndrome, their parents and siblings. Ann Hum Genet 65:167–176PubMedCrossRefGoogle Scholar
  27. Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18:902–904PubMedGoogle Scholar
  28. Hoekman MF, Jacobs FM, Smidt MP, Burbach JP (2006) Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns 6:134–140PubMedCrossRefGoogle Scholar
  29. Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, Xu S, Eckman C, Younkin S, Price D (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15:1203–1218PubMedCrossRefGoogle Scholar
  30. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102PubMedCrossRefGoogle Scholar
  31. Isacson O, Seo H, Lin L, Albeck D, Granholm AC (2002) Alzheimer’s disease and Down’s syndrome: roles of APP, trophic factors and ACh. Trends Neurosci 25:79–84PubMedCrossRefGoogle Scholar
  32. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959–35967PubMedCrossRefGoogle Scholar
  33. Jacobsen KT, Adlerz L, Multhaup G, Iverfeldt K (2010) Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol Chem 285:10223–10231PubMedCrossRefGoogle Scholar
  34. Kappeler L, Filho CM, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le Bouc Y, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6:e254-PubMedCrossRefGoogle Scholar
  35. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464PubMedCrossRefGoogle Scholar
  36. Killick R, Scales G, Leroy K, Causevic M, Hooper C, Irvine EE, Choudhury AI, Drinkwater L, Kerr F, Al Qassab H, Stephenson J, Yilmaz Z, Giese KP, Brion JP, Withers DJ, Lovestone S (2009) Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem Biophys Res Commun 386:257–262PubMedCrossRefGoogle Scholar
  37. Kitamura T, Kitamura YI, Funahashi Y, Shawber CJ, Castrillon DH, Kollipara R, DePinho RA, Kitajewski J, Accili D (2007) A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest 117:2477–2485PubMedCrossRefGoogle Scholar
  38. Kroner Z (2009) The relationship between Alzheimer’s disease and diabetes: type 3 diabetes? Altern Med Rev 14:373–379PubMedGoogle Scholar
  39. Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11:1950–1957PubMedCrossRefGoogle Scholar
  40. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093PubMedCrossRefGoogle Scholar
  41. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357PubMedCrossRefGoogle Scholar
  42. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322PubMedCrossRefGoogle Scholar
  43. Lovestone S (1999) Diabetes and dementia: is the brain another site of end-organ damage? Neurology 53:1907–1909PubMedCrossRefGoogle Scholar
  44. Marks N, Berg MJ (2010) BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 35:181–210PubMedCrossRefGoogle Scholar
  45. Matsubara E, Bryant-Thomas T, Pacheco QJ, Henry TL, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan YJ, Smith MA, Perry G, Shoji M, Abe K, Leone A, Grundke-Ikbal I, Wilson GL, Ghiso J, Williams C, Refolo LM, Pappolla MA, Chain DG, Neria E (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85:1101–1108PubMedCrossRefGoogle Scholar
  46. Meilandt WJ, Cisse M, Ho K, Wu T, Esposito LA, Scearce-Levie K, Cheng IH, Yu GQ, Mucke L (2009) Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic A{beta} oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J Neurosci 29:1977–1986PubMedCrossRefGoogle Scholar
  47. Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492PubMedCrossRefGoogle Scholar
  48. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2008) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31(2):224–243CrossRefGoogle Scholar
  49. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243PubMedCrossRefGoogle Scholar
  50. Nathan C, Calingasan N, Nezezon J, Ding A, Lucia MS, La Perle K, Fuortes M, Lin M, Ehrt S, Kwon NS, Chen J, Vodovotz Y, Kipiani K, Beal MF (2005) Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J Exp Med 202:1163–1169PubMedCrossRefGoogle Scholar
  51. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999PubMedCrossRefGoogle Scholar
  52. Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM (1996) Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia 39:1392–1397PubMedCrossRefGoogle Scholar
  53. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53:1937–1942PubMedCrossRefGoogle Scholar
  54. Pilcher H (2006) Alzheimer’s disease could be “type 3 diabetes”. Lancet Neurol 5:388–389PubMedCrossRefGoogle Scholar
  55. Puglielli L (2008) Aging of the brain, neurotrophin signaling, and Alzheimer’s disease: is IGF1-R the common culprit? Neurobiol Aging 29:795–811PubMedCrossRefGoogle Scholar
  56. Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278:19777–19783PubMedCrossRefGoogle Scholar
  57. Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T, Schwille P, Schulz JB, Schroeder C, Simons M, Jennings G, Knolker HJ, Simons K (2008) Efficient inhibition of the Alzheimer’s disease beta-secretase by membrane targeting. Science 320:520–523PubMedCrossRefGoogle Scholar
  58. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268PubMedGoogle Scholar
  59. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26PubMedCrossRefGoogle Scholar
  60. Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J, Del Favero J, Cruts M, van Duijn CM, Van Broeckhoven C (2006) APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 129:2977–2983PubMedCrossRefGoogle Scholar
  61. Stachelscheid H, Ibrahim H, Koch L, Schmitz A, Tscharntke M, Wunderlich FT, Scott J, Michels C, Wickenhauser C, Haase I, Bruning JC, Niessen CM (2008) Epidermal insulin/IGF-1 signalling control interfollicular morphogenesis and proliferative potential through Rac activation. EMBO J 27:2091–2101PubMedCrossRefGoogle Scholar
  62. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7:63–80PubMedGoogle Scholar
  63. Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22:7380–7388PubMedGoogle Scholar
  64. Strauss D, Eyman RK (1996) Mortality of people with mental retardation in California with and without Down syndrome, 1986–1991. Am J Ment Retard 100:643–653PubMedGoogle Scholar
  65. Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317:369–372PubMedCrossRefGoogle Scholar
  66. Willuweit A, Velden J, Godemann R, Manook A, Jetzek F, Tintrup H, Kauselmann G, Zevnik B, Henriksen G, Drzezga A, Pohlner J, Schoor M, Kemp JA, von der Kammer K (2009) Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimer’s disease. PLoS One 4:e7931PubMedCrossRefGoogle Scholar
  67. Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282PubMedCrossRefGoogle Scholar
  68. Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290:147–150PubMedCrossRefGoogle Scholar
  69. Yang Q, Rasmussen SA, Friedman JM (2002) Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet 359:1019–1025PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2011

Authors and Affiliations

  • Oliver Stöhr
    • 1
  • Katharina Schilbach
    • 1
  • Lorna Moll
    • 1
  • Moritz M. Hettich
    • 1
    • 4
  • Susanna Freude
    • 1
    • 2
  • F. Thomas Wunderlich
    • 2
    • 3
  • Marianne Ernst
    • 2
    • 5
  • Johanna Zemva
    • 1
  • Jens C. Brüning
    • 1
    • 2
    • 3
    • 5
  • Wilhelm Krone
    • 1
    • 2
  • Michael Udelhoven
    • 1
    • 2
    • 6
  • Markus Schubert
    • 1
    • 2
    • 6
  1. 1.Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
  2. 2.Cologne excellence cluster in Cellular Stress Responses in Aging-Associated Diseases (CECAD)University of CologneCologneGermany
  3. 3.Max Planck Institute for Neurological ResearchCologneGermany
  4. 4.Molecular and Cellular Cognition LabGerman Centre for Neurodegenerative Diseases (DZNE)BonnGermany
  5. 5.Department of Mouse Genetics and MetabolismInstitute for Genetics University of CologneCologneGermany
  6. 6.Center for Endocrinology, Diabetes and Preventive MedicineUniversity of CologneCologneGermany

Personalised recommendations