, Volume 34, Issue 6, pp 1405–1419

Promoter methylation and age-related downregulation of Klotho in rhesus monkey

  • Gwendalyn D. King
  • Douglas L. Rosene
  • Carmela R. Abraham


While overall DNA methylation decreases with age, CpG-rich areas of the genome can become hypermethylated. Hypermethylation near transcription start sites typically decreases gene expression. Klotho (KL) is important in numerous age-associated pathways including insulin/IGF1 and Wnt signaling and naturally decreases with age in brain, heart, and liver across species. Brain tissues from young and old rhesus monkeys were used to determine whether epigenetic modification of the KL promoter underlies age-related decreases in mRNA and protein levels of KL. The KL promoter in genomic DNA from brain white matter did not show evidence of oxidation in vivo but did exhibit an increase in methylation with age. Further analysis identified individual CpG motifs across the region of interest with increased methylation in old animals. In vitro methyl modification of these individual cytosine residues confirmed that methylation of the promoter can decrease gene transcription. These results provide evidence that changes in KL gene expression with age may, at least in part, be the result of epigenetic changes to the 5′ regulatory region.


Oxidation Methylation Age downregulation White matter Pyrosequencing 


  1. Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, Fried L, Hamosh A, Dey S, McIntosh I, Dietz HC (2002) Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A 99(2):856–861. doi:10.1073/pnas.022484299 PubMedCrossRefGoogle Scholar
  2. Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, Becker LC, Dietz HC (2003) KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 72(5):1154–61PubMedCrossRefGoogle Scholar
  3. Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC (2005) Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 96(4):412–8PubMedCrossRefGoogle Scholar
  4. Brooks PJ, Marietta C, Goldman D (1996) DNA mismatch repair and DNA methylation in adult brain neurons. J Neurosci 16(3):939–945PubMedGoogle Scholar
  5. Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, Nabeshima Y, Reyes-Mugica M, Carpenter TO, Lifton RP (2008) A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A 105(9):3455–3460PubMedCrossRefGoogle Scholar
  6. Camilli TC, Xu M, O’Connell MP, Chien B, Frank BP, Subaran S, Indig FE, Morin PJ, Hewitt SM, Weeraratna AT (2010) Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res 24(1):175–186. doi:10.1111/j.1755-148X.2010.00792.x PubMedCrossRefGoogle Scholar
  7. Chang YM, Rosene DL, Killiany RJ, Mangiamele LA, Luebke JI (2005) Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cereb Cortex 15(4):409–418PubMedCrossRefGoogle Scholar
  8. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A 104(50):19796–197801PubMedCrossRefGoogle Scholar
  9. Chen B, Wang X, Zhao W, Wu J (2010) Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549. J Exp Clin Cancer Res 29:99PubMedCrossRefGoogle Scholar
  10. Choi BH, Kim CG, Lim Y, Lee YH, Shin SY (2010) Transcriptional activation of the human Klotho gene by epidermal growth factor in HEK293 cells; role of Egr-1. Gene 450(1–2):121–127PubMedCrossRefGoogle Scholar
  11. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602. doi:10.1371/journal.pgen.1000602 PubMedCrossRefGoogle Scholar
  12. Chu MW, Siegmund KD, Eckstam CL, Kim JY, Yang AS, Kanel GC, Tavare S, Shibata D (2007) Lack of increases in methylation at three CpG-rich genomic loci in non-mitotic adult tissues during aging. BMC Med Genet 8:50PubMedCrossRefGoogle Scholar
  13. Desjardins S, Mayo W, Vallee M, Hancock D, Le Moal M, Simon H, Abrous DN (1997) Effect of aging on the basal expression of c-Fos, c-Jun, and Egr-1 proteins in the hippocampus. Neurobiol Aging 18(1):37–44PubMedCrossRefGoogle Scholar
  14. Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR (2008) Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 56(1):106–117. doi:10.1002/glia.20593 PubMedCrossRefGoogle Scholar
  15. Golbus J, Palella TD, Richardson BC (1990) Quantitative changes in T cell DNA methylation occur during differentiation and ageing. Eur J Immunol 20(8):1869–1872. doi:10.1002/eji.1830200836 PubMedCrossRefGoogle Scholar
  16. Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, Chong S, Moore M, Longo DL, Cookson MR, Traynor BJ, Singleton AB (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol GenetGoogle Scholar
  17. Herndon JG, Moss MB, Rosene DL, Killiany RJ (1997) Patterns of cognitive decline in aged rhesus monkeys. Behav Brain Res 87(1):25–34PubMedCrossRefGoogle Scholar
  18. Hinman JD, Abraham CR (2007) What’s behind the decline? The role of white matter in brain aging. Neurochem Res 32(12):2023–2031. doi:10.1007/s11064-007-9341-x PubMedCrossRefGoogle Scholar
  19. Hinman JD, Peters A, Cabral H, Rosene DL, Hollander W, Rasband MN, Abraham CR (2006) Age-related molecular reorganization at the node of Ranvier. J Comp Neurol 495(4):351–362. doi:10.1002/cne.20886 PubMedCrossRefGoogle Scholar
  20. Hinman JD, Chen CD, Oh SY, Hollander W, Abraham CR (2008) Age-dependent accumulation of ubiquitinated 2′,3′-cyclic nucleotide 3′-phosphodiesterase in myelin lipid rafts. Glia 56(1):118–133. doi:10.1002/glia.20595 PubMedCrossRefGoogle Scholar
  21. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, Goetz R, Mohammadi M, White KE, Econs MJ (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117(9):2684–2691. doi:10.1172/JCI31330 PubMedCrossRefGoogle Scholar
  22. Invidia L, Salvioli S, Altilia S, Pierini M, Panourgia MP, Monti D, De Rango F, Passarino G, Franceschi C (2010) The frequency of Klotho KL-VS polymorphism in a large Italian population, from young subjects to centenarians, suggests the presence of specific time windows for its effect. Biogerontology 11(1):67–73. doi:10.1007/s10522-009-9229-z PubMedCrossRefGoogle Scholar
  23. Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta 1790(10):1049–1058PubMedCrossRefGoogle Scholar
  24. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. doi:10.1038/36285 PubMedCrossRefGoogle Scholar
  25. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309(5742):1829–1833PubMedCrossRefGoogle Scholar
  26. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281(10):6120–6123PubMedCrossRefGoogle Scholar
  27. Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B, Jung SI, Yi L, Han Y, Yang Y, Kim KI, Lim JS, Yang I, Jeon S, Bae DH, Kim CJ, Lee MS (2010) The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer 9(9):109PubMedCrossRefGoogle Scholar
  28. Li H, Mitchell JR, Hasty P (2008) DNA double-strand breaks: a potential causative factor for mammalian aging? Mech Ageing Dev 129(7–8):416–424PubMedCrossRefGoogle Scholar
  29. Liang R, Bates DJ, Wang E (2009) Epigenetic Control of MicroRNA Expression and Aging. Curr Genomics 10(3):184–193. doi:10.2174/138920209788185225 PubMedCrossRefGoogle Scholar
  30. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806PubMedCrossRefGoogle Scholar
  31. Liu L, van Groen T, Kadish I, Tollefsbol TO (2009) DNA methylation impacts on learning and memory in aging. Neurobiol Aging 30(4):549–560PubMedCrossRefGoogle Scholar
  32. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891. doi:10.1038/nature02661 PubMedCrossRefGoogle Scholar
  33. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28(42):10576–10586PubMedCrossRefGoogle Scholar
  34. Luebke J, Barbas H, Peters A (2010) Effects of normal aging on prefrontal area 46 in the rhesus monkey. Brain Res Rev 62(2):212–232PubMedCrossRefGoogle Scholar
  35. Maes OC, An J, Sarojini H, Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129(9):534–541PubMedCrossRefGoogle Scholar
  36. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242(3):626–630PubMedCrossRefGoogle Scholar
  37. Nabeshima Y (2002) Ectopic calcification in Klotho mice. Clin Calcium 12(8):1114–1117PubMedGoogle Scholar
  38. Nabeshima Y (2008) The discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis. Cell Mol Life Sci 65(20):3218–3230. doi:10.1007/s00018-008-8177-0 PubMedCrossRefGoogle Scholar
  39. Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, Nabeshima Y, Nabeshima T (2003) Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J 17(1):50–52. doi:10.1096/fj.02-0448fje PubMedGoogle Scholar
  40. Pan J, Zhong J, Gan LH, Chen SJ, Jin HC, Wang X, Wang LJ (2011) Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumour Biol. doi:10.1007/s13277-011-0174-5
  41. Penner MR, Roth TL, Chawla MK, Hoang LT, Roth ED, Lubin FD, Sweatt JD, Worley PF, Barnes CA (2010) Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiol AgingGoogle Scholar
  42. Peters A (2009) The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front Neuroanat 3:11. doi:10.3389/neuro.05.011.2009 PubMedCrossRefGoogle Scholar
  43. Peters A, Sethares C, Moss MB (1998) The effects of aging on layer 1 in area 46 of prefrontal cortex in the rhesus monkey. Cereb Cortex 8(8):671–684PubMedCrossRefGoogle Scholar
  44. Peters A, Moss MB, Sethares C (2000) Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol 419(3):364–376. doi:10.1002/(SICI)1096-9861(20000410)419:3<364::AID-CNE8>3.0.CO;2-R PubMedCrossRefGoogle Scholar
  45. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686PubMedCrossRefGoogle Scholar
  46. Shih PH, Yen GC (2007) Differential expressions of antioxidant status in aging rats: the role of transcriptional factor Nrf2 and MAPK signaling pathway. Biogerontology 8(2):71–80. doi:10.1007/s10522-006-9033-y PubMedCrossRefGoogle Scholar
  47. Shiozaki M, Yoshimura K, Shibata M, Koike M, Matsuura N, Uchiyama Y, Gotow T (2008) Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience 152(4):924–941PubMedCrossRefGoogle Scholar
  48. Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2(9):e895. doi:10.1371/journal.pone.0000895 PubMedCrossRefGoogle Scholar
  49. Sloane JA, Hollander W, Moss MB, Rosene DL, Abraham CR (1999) Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiol Aging 20(4):395–405PubMedCrossRefGoogle Scholar
  50. Sloane JA, Hollander W, Rosene DL, Moss MB, Kemper T, Abraham CR (2000) Astrocytic hypertrophy and altered GFAP degradation with age in subcortical white matter of the rhesus monkey. Brain Res 862(1–2):1–10PubMedCrossRefGoogle Scholar
  51. Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR (2003) Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 84(1):157–168PubMedCrossRefGoogle Scholar
  52. Takasugi M (2011) Progressive age-dependent DNA methylation changes start before adulthood in mouse tissues. Mech Ageing DevGoogle Scholar
  53. Tigges J, Gordon TP, McClure HM, Hall EC, Peters A (1988) Survival rate and life span of rhesus monkeys at Yerkes Regional Primate Research Center. Am J Primatol 15:263–73CrossRefGoogle Scholar
  54. Uchida A, Komiya Y, Tashiro T, Yorifuji H, Kishimoto T, Nabeshima Y, Hisanaga S (2001) Neurofilaments of Klotho, the mutant mouse prematurely displaying symptoms resembling human aging. J Neurosci Res 64(4):364–370PubMedCrossRefGoogle Scholar
  55. Utsugi T, Ohno T, Ohyama Y, Uchiyama T, Saito Y, Matsumura Y, Aizawa H, Itoh H, Kurabayashi M, Kawazu S, Tomono S, Oka Y, Suga T, Kuro-o M, Nabeshima Y, Nagai R (2000) Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 49(9):1118–1123PubMedCrossRefGoogle Scholar
  56. Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262(21):9948–51PubMedGoogle Scholar
  57. Wisco JJ, Killiany RJ, Guttmann CR, Warfield SK, Moss MB, Rosene DL (2008) An MRI study of age-related white and gray matter volume changes in the rhesus monkey. Neurobiol Aging 29(10):1563–1575PubMedCrossRefGoogle Scholar
  58. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, Kuro-o M, Karlan B, Kaufman B, Koeffler HP, Rubinek T (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27(56):7094–7105PubMedCrossRefGoogle Scholar
  59. Wolf I, Laitman Y, Rubinek T, Abramovitz L, Novikov I, Beeri R, Kuro OM, Koeffler HP, Catane R, Freedman LS, Levy-Lahad E, Karlan BY, Friedman E, Kaufman B (2010) Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene 29(1):26–33PubMedCrossRefGoogle Scholar
  60. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280(45):38029–38034PubMedCrossRefGoogle Scholar
  61. Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58(3):277–286. doi:10.1002/glia.20922 PubMedGoogle Scholar
  62. Zschocke J, Allritz C, Engele J, Rein T (2007) DNA methylation dependent silencing of the human glutamate transporter EAAT2 gene in glial cells. Glia 55(7):663–674. doi:10.1002/glia.20497 PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2011

Authors and Affiliations

  • Gwendalyn D. King
    • 1
    • 4
  • Douglas L. Rosene
    • 2
    • 3
  • Carmela R. Abraham
    • 1
  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA
  2. 2.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA
  3. 3.Yerkes National Primate Research CenterEmory UniversityAtlantaUSA
  4. 4.Department of NeurobiologyUniversity of AlabamaBirminghamUSA

Personalised recommendations