AGE

, Volume 34, Issue 3, pp 681–692 | Cite as

Melatonin protects lung mitochondria from aging

  • Darío Acuña-Castroviejo
  • Miguel Carretero
  • Carolina Doerrier
  • Luis C. López
  • Laura García-Corzo
  • Jesús A. Tresguerres
  • Germaine Escames
Article

Abstract

We assessed whether melatonin administration would prevent the hyperoxidative status that occurs in lung mitochondria with age. Mitochondria from lungs of male and female senescent prone mice at 5 and 10 months of age were studied. Age-dependent mitochondrial oxidative stress was evaluated by measuring the levels of lipid peroxidation and nitrite, glutathione/glutathione disulfide ratio, and glutathione peroxidase and reductase activities. Mitochondrial respiratory chain and oxidative phosphorylation capability were also measured. Age induces a significant oxidative/nitrosative status in lung mitochondria, which exhibited a significantly reduced activity of the respiratory chain and ATP production. These manifestations of age were more pronounced in males than in females. After 9 months of melatonin administration in the drinking water, the hyperoxidative status and functional deficiency of aged lung mitochondria were totally counteracted, and had increased ATP production. The beneficial effects of melatonin were generally similar in both mice genders. Thus, melatonin administration, as a single therapy, maintained fully functioning lung mitochondria during aging, a finding with important consequences in the pathophysiology of lung aging. In view of these data melatonin, the production of which decreases with age, should be considered a preventive therapy against the hyperoxidative status of the aged lungs, and its use may lead to the avoidance of respiratory complications in the elderly.

Keywords

Lung Aging Mitochondria Respiratory chain Oxidative phosphorylation Oxidative stress 

References

  1. Acuña-Castroviejo D, Martín M, Macías M, Escames G, León J, Khaldy H, Reiter RJ (2001) Melatonin, mitochondria and cellular bioenergetics. J Pineal Res 30:65–74PubMedCrossRefGoogle Scholar
  2. Acuña-Castroviejo D, Escames G, Rodríguez MI, López LC (2007) Melatonin role in the mitochondrial function. Front Biosci 12:947–963PubMedCrossRefGoogle Scholar
  3. Acuña-Castroviejo D, López LC, Escames G, López A, García JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221–240PubMedGoogle Scholar
  4. Antolin I, Rodríguez C, Sainz RM, Mayo JC, Uría H, Kotler ML, Rodríguez-Colunga MJ, Tolivia D, Menéndez-Peláez A (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890PubMedGoogle Scholar
  5. Baleeiro CE, Wilcoxen SE, Morris SB, Standiford TJ, Paine R 3rd (2003) Sublethal hyperoxia impairs pulmonary innate immunity. J Immunol 171:955–963PubMedGoogle Scholar
  6. Barrientos A (2002) In vivo and in organelle assessment of OXPHOS activities. Methods 26:307–316PubMedCrossRefGoogle Scholar
  7. Benard G, Faustin B, Passerieux E, Galinier A, Rocher C, Bellance N, Delage J-P, Casteilla L, Letellier T, Rossignol R (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol 291:C1172–C1182PubMedCrossRefGoogle Scholar
  8. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57PubMedCrossRefGoogle Scholar
  9. Brown GC, Boroutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49PubMedCrossRefGoogle Scholar
  10. Brown GC, Borutaite V (2002) Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med 33:1440–1450PubMedCrossRefGoogle Scholar
  11. Brusque AM, Rosa RB, Schuck PF, Dalcin KB, Ribeiro CAJ, Silva CG, Wannmacher CMD, Dutra-Filho CS, Wyse ATS, Briones P, Wajner M (2002) Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40:593–601PubMedCrossRefGoogle Scholar
  12. Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernández C, Soria-Valles C, De Gonzalo-Calvo D, Tolivia D, Pallás M, Camins A, Rodríguez-Colunga MJ, Coto-Montes A (2009) Melatonin alters cell death processes in response to age-related oxidative stress in the brain of senescence-accelerated mice. J Pineal Res 46:106–114PubMedCrossRefGoogle Scholar
  13. Campbell SE, Febbraio MA (2001) Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle. Am J Physiol Endocrinol Metab 281:E803–E808PubMedGoogle Scholar
  14. Candore G, Balistreri CR, Colonna-Romano G, Lio D, Listì F, Vasto S, Caruso C (2010) Gender-related immune-inflammatory factors, age-related diseases, and longevity. Rejuvenation Res 13:292–297PubMedCrossRefGoogle Scholar
  15. Carretero M, Escames G, López LC, Venegas C, Dayoub JC, García LC, Acuña-Castroviejo D (2009) Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res 47:192–200PubMedCrossRefGoogle Scholar
  16. Crespo E, Macías M, Pozo D, Escames G, Martín M, Vives F, Guerrero JM, Acuña-Castroviejo D (1999) Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 13:1537–1546PubMedGoogle Scholar
  17. De Lourdes M, Seabra V, Bignotto M, Pinto LR, Tufik S (2000) Randomised double blind clinical trial, controlled with placebo of the toxicology of chronic melatonin treatment. J Pineal Res 29:193–200CrossRefGoogle Scholar
  18. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedGoogle Scholar
  19. Elder AC, Gelein R, Finkelstein JN, Cox C, Oberdorster G (2000) Pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin. Inhal Toxicol 12:227–246PubMedCrossRefGoogle Scholar
  20. Escames G, León J, Macías M, Khaldy H, Acuña-Castroviejo D (2003) Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J 17:932–934PubMedGoogle Scholar
  21. Escames G, López LC, Ortiz F, Ros E, Acuña-Castroviejo D (2006) Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: effects of melatonin treatment. Exp Gerontol 41:1165–1173PubMedCrossRefGoogle Scholar
  22. Escames G, López LC, Ortiz F, López A, García JA, Ros E, Acuña-Castroviejo D (2007) Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J 274:2135–2147PubMedCrossRefGoogle Scholar
  23. Esterbauer H, Cheeseman KH (1990) Determination of aldehidic lipid peroxidation products: malonaldehide and 4-hydroxynonenal. Methods Enzymol 186:407–421PubMedCrossRefGoogle Scholar
  24. Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem. doi:10.1074/jbc.M110.164160 Google Scholar
  25. Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis 12:877–885PubMedCrossRefGoogle Scholar
  26. Green LC, Ruiz de Luzuriaga K (1981) Nitrate biosynthesis in man. Proc Natl Acad Sci USA 78:7764–7768PubMedCrossRefGoogle Scholar
  27. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935PubMedCrossRefGoogle Scholar
  28. Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47:109–126PubMedCrossRefGoogle Scholar
  29. Hissin PJ, Hilf R (1976) A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226PubMedCrossRefGoogle Scholar
  30. Hosokawa M (2002) A higher oxidative status accelerates senescence and aggravates age dependent disorders in SAMP strains of mice. Mech Aging Dev 123:1553–1561PubMedCrossRefGoogle Scholar
  31. Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Meth Enzymol 348:93–112PubMedCrossRefGoogle Scholar
  32. Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9:169–181CrossRefGoogle Scholar
  33. Jou MJ, Peng TI, Hsu LF, Jou SB, Reiter RJ, Yang CM, Chiao CC, Lin YF, Chen CC (2010) Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res 48:20–38PubMedCrossRefGoogle Scholar
  34. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447PubMedCrossRefGoogle Scholar
  35. Lardone PJ, Alvarez-García O, Carrillo-Vico A, Vega-Naredo I, Caballero B, Guerrero JM, Coto-Montes A (2006) Inverse correlation between endogenous melatonin levels and oxidative damage in some tissues of SAM P8 mice. J Pineal Res 40:153–157PubMedCrossRefGoogle Scholar
  36. Liu W, Porter NA, Schneider C, Brash AR, Yin H (2010) Formation of 4-hydroxynonenal from cardiolipin oxidation: intramolecular peroxyl radical addition and decomposition. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2010.10.709 Google Scholar
  37. López LC, Escames G, Tapias V, Utrilla MP, León J, Acuña-Castroviejo D (2006) Identification of an inducible nitric oxide synthase in diaphragm mitochondria from septic mice. Its relation with mitochondrial dysfunction and prevention by melatonin. Int J Biochem Cell Biol 38:267–278PubMedCrossRefGoogle Scholar
  38. López A, García JA, Escames G, Venegas C, Ortiz F, López LC, Acuña-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46:188–198PubMedCrossRefGoogle Scholar
  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  40. Martín M, Macías M, Escames G, León J, Acuña-Castroviejo D (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14:1677–1679PubMedGoogle Scholar
  41. Martín M, Macías M, León J, Escames G, Khaldy H, Acuña-Castroviejo D (2002) Melatonin increases the activity of the complexes I and IV of the electron transport chain and the ATP production in rat brain and liver mitochondria. Int J Biochem Cell Biol 34:348–357PubMedCrossRefGoogle Scholar
  42. Matsugo S, Kitagawa T, Minami S, Esashi Y, Oomura Y, Tokumaru S, Kojo S, Matsushima K, Sasaki K (2000) Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice. Neurosci Lett 278:105–108PubMedCrossRefGoogle Scholar
  43. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208PubMedGoogle Scholar
  44. Meyer KC (2005) Aging. Proc Am Thorac Soc 2:433–439PubMedCrossRefGoogle Scholar
  45. Mikerov AN, Gan X, Umstead TM, Miller L, Chinchilli VM, Phelps DS, Floros J (2008) Sex differences in the impact of ozone on survival and alveolar macrophage function of mice after Klebsiella pneumoniae infection. Respir Res 9:24PubMedCrossRefGoogle Scholar
  46. Miquel J (1998) An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol 33:113–126PubMedCrossRefGoogle Scholar
  47. Mora AL, Rojas M (2008) Aging and lung injury repair: a role for bone marrow derived mesenchymal stem cells. J Cell Biochem 105:641–647PubMedCrossRefGoogle Scholar
  48. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, trolls and controls. Cell 78:915–918PubMedCrossRefGoogle Scholar
  49. Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48:297–310PubMedCrossRefGoogle Scholar
  50. Pendyala S, Natarajan V (2010) Redox regulation of NOx proteins. Respir Physiol Neurobiol. doi:10.1016/j.resp.2010.09.016 PubMedGoogle Scholar
  51. Pissarek M, Reinhhardt R, Reichelt C, Manaenko A, Krauss GJ, Illes P (1999) Rapid assay for one-run determination of purine and pyrimidine mucleotide contents in neocortical slices and cell cultures. Brain Res Protoc 4:314–321CrossRefGoogle Scholar
  52. Rebrin I, Kamzalov S, Sohal RS (2003) Effects of age and caloric restriction on glutathione redox state in mice. Free Radic Biol Med 35:626–635PubMedCrossRefGoogle Scholar
  53. Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 44:175–200PubMedCrossRefGoogle Scholar
  54. Riahi Y, Cohen G, Shamni O, Sasson S (2010) Signaling and cytotoxic functions of 4-Hydroxyalkenals. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00508.201 PubMedGoogle Scholar
  55. Rodríguez MI, Escames G, López LC, García JA, Ortiz F, López A, Acuña-Castroviejo D (2007a) Melatonin administration prevents cardiac and diaphragmatic mitochondrial oxidative damage in senescence-accelerated mice. J Endocrinol 194:637–643CrossRefGoogle Scholar
  56. Rodríguez I, Escames G, Lopez LC, Lopez A, Garcia JA, Ortiz F, Sanchez V, Romeu M, Acuña-Castroviejo D (2008) Improved mitocondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp Gerontol 43:479–756CrossRefGoogle Scholar
  57. Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, Acuña-Castroviejo D (2007b) Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. J Pineal Res 42:272–279CrossRefGoogle Scholar
  58. Sharma G, Goodwin J (2006) Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 1:253–260PubMedCrossRefGoogle Scholar
  59. Shoal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586CrossRefGoogle Scholar
  60. Sprung J, Gajic O, Warner DO (2006) Review article: age related alterations in respiratory function - anesthetic considerations. Can J Anaesth 53:1244–1257PubMedCrossRefGoogle Scholar
  61. Squadrito GL, Pryor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide. Free Radic Biol Med 25:392–403PubMedCrossRefGoogle Scholar
  62. Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110PubMedCrossRefGoogle Scholar
  63. Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60Google Scholar
  64. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Vijayalaxmi WST, Shepherd AM (1998) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 253:614–620PubMedCrossRefGoogle Scholar
  65. Tan DX, Manchester LC, Burkhardt S, Sainz RM, Mayo JC, Kohen R, Shohami E, Huo YS, Hardeland R, Reiter RJ (2001) N 1-acetyl-N 2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15:2294–2296PubMedGoogle Scholar
  66. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivates: a never-ending interacting of melatonin with reactive and oxygen and nitrogen species? J Pineal Res 42:28–42PubMedCrossRefGoogle Scholar
  67. Teramoto S, Fukuchi Y, Uejima Y, Teramoto K, Oka T, Orimo H (1994) A novel model of senile lung: senescence-accelerated mouse (SAM). Am J Respir Crit Care Med 150:238–244PubMedGoogle Scholar
  68. Uejima Y, Fukuchi Y, Nagase T, Matsuse T, Yamaoka M, Tabata R, Orimo H (1990) Influence of inhaled tobacco smoke on the senescence accelerated mouse (SAM). Eur Respir J 3:1029–1036PubMedGoogle Scholar
  69. Umstead TM, Freeman WM, Chinchilli VM, Phelps DS (2009) Age-related changes in the expression and oxidation of bronchoalveolar lavage proteins in the rat. Am J Physiol Lung Cell Mol Physiol 296:L14–L29PubMedCrossRefGoogle Scholar
  70. Viña J, Borrás C (2010) Women live longer than men: understanding molecular mechanisms offers opportunities to intervene by using estrogenic compounds. Antioxid Redox Signal 13:269–278PubMedCrossRefGoogle Scholar
  71. Waldhauser F, Kovács J, Reiter E (1998) Age-related changes in melatonin levels in humans and its potential consequences for sleep disorders. Exp Gerontol 33:759–772PubMedCrossRefGoogle Scholar
  72. Wang J, Green PS, Simpkins JW (2001) Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells. J Neurochem 77:804–811PubMedCrossRefGoogle Scholar

Copyright information

© American Aging Association 2011

Authors and Affiliations

  • Darío Acuña-Castroviejo
    • 1
    • 2
    • 3
  • Miguel Carretero
    • 1
  • Carolina Doerrier
    • 1
    • 3
  • Luis C. López
    • 1
    • 3
  • Laura García-Corzo
    • 1
    • 3
  • Jesús A. Tresguerres
    • 4
  • Germaine Escames
    • 1
    • 3
    • 5
  1. 1.Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la SaludUniversidad de GranadaGranadaSpain
  2. 2.Laboratorio de Análisis ClínicosHospital Universitario San CecilioGranadaSpain
  3. 3.Departamento de Fisiología, Facultad de MedicinaUniversidad de GranadaGranadaSpain
  4. 4.Departamento de Fisiología, Facultad de MedicinaUniversidad ComplutenseMadridSpain
  5. 5.Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la SaludArmilla, GranadaSpain

Personalised recommendations