AGE

, Volume 34, Issue 1, pp 169–179 | Cite as

Global DNA methylation in old subjects is correlated with frailty

  • Dina Bellizzi
  • Patrizia D’Aquila
  • Alberto Montesanto
  • Andrea Corsonello
  • Vincenzo Mari
  • Bruno Mazzei
  • Fabrizia Lattanzio
  • Giuseppe Passarino
Article

Abstract

Epigenetic variations have been widely described to occur during the aging process. To verify if these modifications are correlated with the inter-individual phenotypic variability of elderly people, we searched for a correlation between global DNA methylation levels and frailty. We found that the global DNA methylation levels were correlated to the frailty status in middle/advanced-aged subjects but not with age. A 7-year follow-up study also revealed that a worsening in the frailty status was associated to a significant decrease in the global DNA methylation levels. These results suggest that the relaxation of the epigenetic control in aging is specifically associated with the functional decline rather than with the chronological age of individuals. Thus, the modifications of DNA methylation, representing a drawbridge between the genetic and the environmental factors affecting the age-related decay of the organism, may play an important role in determining physiological changes over old age.

Keywords

Frailty Global DNA methylation Epigenetics Aging 

References

  1. Agrawal A, Tay J, Yang GE, Agrawal S, Gupta S (2010) Age-associated epigenetic modifications in human DNA increase its immunogenicity. Aging 20:93–100Google Scholar
  2. Anisowicz A, Huang H, Braunschweiger KI, Liu Z, Giese H, Wang H, Mamaev S, Olejnik J, Massion PP, Del Mastro RG (2008) A high-throughput and sensitive method to measure global DNA methylation: application in lung cancer. BMC Cancer 8:222. doi:10.1186/1471-2407-8-222 PubMedCrossRefGoogle Scholar
  3. Arai T, Kasahara I, Sawabe M, Honma N, Aida J, Tabubo K (2010) Role of methylation of the hMLH1 gene promoter in the development of gastric and colorectal carcinoma in the elderly. Geriatr Gerontol Int Suppl 1:S207–S212. doi:10.1111/j.1447-0594.2010.00590.x CrossRefGoogle Scholar
  4. Bandinelli S, Corsi AM, Milaneschi Y, Vazzana R (2010) Frailty and the homeostatic network. Acta Biomed 81(Suppl 1):15–18PubMedGoogle Scholar
  5. Barbot W, Dupressoir A, Lazar V, Heidmann T (2002) Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Res 30:2365–2373. doi:10.1093/nar/30.11.2365 PubMedCrossRefGoogle Scholar
  6. Barzilay JI, Blaum C, Moore T, Xue QL, Hirsch CH, Walston JD, Fried LP (2007) Insulin resistance and inflammation as precursors of frailty: the Cardiovascular Health Study. Arch Intern Med 167:635–641. doi:10.1001/archinte.167.19.2145-b PubMedCrossRefGoogle Scholar
  7. Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, Karunananthan S, Wolfson C (2007) Frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A Biol Sci Med Sci 62:731–737PubMedCrossRefGoogle Scholar
  8. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299:2877–2883. doi:10.1001/jama.299.24.2877 PubMedCrossRefGoogle Scholar
  9. Blaum CS, Xue QL, Tian J, Semba RD, Fried LP, Walston J (2009) Is hyperglycemia associated with frailty status in older women? J Am Geriatr Soc 57:840–847. doi:10.1111/j.1532-5415.2009.02196.x PubMedCrossRefGoogle Scholar
  10. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130:234–239. doi:10.1016/j.mad.2008.12.003 PubMedCrossRefGoogle Scholar
  11. Boyle PA, Buchman AS, Wilson RS, Leurgans SE, Bennett DA (2010) Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J Am Geriatr Soc 58:248–255. doi:10.1111/j.1532-5415.2009.02671.x PubMedCrossRefGoogle Scholar
  12. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees. Wadsworth Statistics/Probability Series. Wadsworth, Belmont, CAGoogle Scholar
  13. Buchman AS, Boyle PA, Wilson RS, Tang Y, Bennett DA (2007) Frailty is associated with incident Alzheimer's disease and cognitive decline in the elderly. Psychosom Med 69:483–489. doi:10.1097/psy.0b013e318068de1d PubMedCrossRefGoogle Scholar
  14. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida I (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49:1292–1296. doi:10.1373/49.8.1292 PubMedCrossRefGoogle Scholar
  15. Coneyworth LJ, Mathers JC, Ford D (2009) Does promoter methylation of the SLC30A5 (ZnT5) zinc transporter gene contribute to the ageing-related decline in zinc status? Proc Nutr Soc 68:142–147. doi:10.1017/S0029665109001104 PubMedCrossRefGoogle Scholar
  16. Davis DH, Rockwood MR, Mitnitski AB, Rockwood K (2010) Impairments in mobility and balance in relation to frailty. Arch Gerontol Geriatr. doi:10.1016/j.archger.2010.06.013 PubMedGoogle Scholar
  17. De Rango F, Montesanto A, Berardelli M, Mazzei B, Mari V, Lattanzio F, Corsonello A, Passarino G (2010) To grow old in southern Italy: a comprehensive description of the old and oldest old in Calabria. Gerontology. doi:10.1159/000316941 PubMedGoogle Scholar
  18. Desai A, Grolleau-Julius A, Yung R (2010) Leukocyte function in the aging immune system. J Leukoc Biol 87:1001–1009. doi:10.1189/jlb.0809542 PubMedCrossRefGoogle Scholar
  19. El-Maarri O, Becker T, Junen J, Manzoor SS, Diaz-Lacava A, Schwaab R, Wienker T, Oldenburg J (2007) Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet 122:505–514. doi:10.1007/s00439-007-0430-3 PubMedCrossRefGoogle Scholar
  20. Evans WJ, Paolisso G, Abbatecola AM, Corsonello A, Bustacchini S, Strollo F, Lattanzio F (2010) Frailty and muscle metabolism dysregulation in the elderly. Biogerontology 11:527–536. doi:10.1007/s10522-010-9297-0 PubMedCrossRefGoogle Scholar
  21. Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47:639–646PubMedGoogle Scholar
  22. Fraga MF (2009) Genetic and epigenetic regulation of aging. Curr Opin Immunol 21:446–453. doi:10.1016/j.coi.2009.04.003 PubMedCrossRefGoogle Scholar
  23. Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418. doi:10.1016/j.tig.2007.05.008 PubMedCrossRefGoogle Scholar
  24. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. doi:10.1073/pnas.0500398102 PubMedGoogle Scholar
  25. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156. doi:10.1093/gerona/56.3.M146 PubMedCrossRefGoogle Scholar
  26. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G (2004) Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci 59:255–263. doi:10.1093/gerona/59.3.M255 PubMedCrossRefGoogle Scholar
  27. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204. doi:10.1046/j.1529-8817.2004.00081.x PubMedCrossRefGoogle Scholar
  28. Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A, Pawelec G (2010) Aging, frailty and age-related diseases. Biogerontology 11:547–563. doi:10.1007/s10522-010-9287-2 PubMedCrossRefGoogle Scholar
  29. Gravina S, Vijg J (2010) Epigenetic factors in aging and longevity. Pflugers Arch 459:247–258. doi:10.1007/s00424-009-0730-7 PubMedCrossRefGoogle Scholar
  30. Hubbard RE, Woodhouse KW (2010) Frailty, inflammation and the elderly. Biogerontology 11:635–641. doi:10.1007/s10522-010-9292-5 PubMedCrossRefGoogle Scholar
  31. Hubbard RE, O'Mahony MS, Savva GM, Calver BL, Woodhouse KW (2009) Inflammation and frailty measures in older people. J Cell Mol Med 13:3103–3109. doi:10.1111/j.1582-4934.2009.00733.x PubMedCrossRefGoogle Scholar
  32. Hubbard RE, Andrew MK, Fallah N, Rockwood K (2010) Comparison of the prognostic importance of diagnosed diabetes, co-morbidity and frailty in older people. Diabet Med 27:603–606. doi:10.1111/j.1464-5491.2010.02977.x PubMedCrossRefGoogle Scholar
  33. Hyde Z, Flicker L, Almeida OP, Hankey GJ, McCaul KA, Chubb SA, Yeap BB (2010) Low free testosterone predicts frailty in older men: the health in men study. J Clin Endocrinol Metab 95:3165–3172. doi:10.1210/jc.2009-2754 PubMedCrossRefGoogle Scholar
  34. Kawakami K, Nakamura A, Ishigami A, Goto S, Takahashi R (2009) Age-related difference of site-specific histone modifications in rat liver. Biogerontology 10:415–421. doi:10.1007/s10522-008-9176-0 PubMedCrossRefGoogle Scholar
  35. Landi F, Russo A, Pahor M, Capoluongo E, Liperoti R, Cesari M, Bernabei R, Onder G (2008) Serum high-density lipoprotein cholesterol levels and mortality in frail, community-living elderly. Gerontology 54:71–78. doi:10.1159/000111381 PubMedCrossRefGoogle Scholar
  36. Landi F, Liperoti R, Russo A, Capoluongo E, Barillaro C, Pahor M, Bernabei R, Onder G (2010) Disability, more than multimorbidity, was predictive of mortality among older persons aged 80 years and older. J Clin Epidemiol 63:752–759. doi:10.1016/j.jclinepi.2009.09.007 PubMedCrossRefGoogle Scholar
  37. Lang PO, Michel JP, Zekry D (2009) Frailty syndrome: a transitional state in a dynamic process. Gerontology 55:539–549. doi:10.1159/000211949 PubMedCrossRefGoogle Scholar
  38. Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B, Jung SI, Yi L, Han Y, Yang Y, Kim KI, Lim JS, Yang I, Jeon S, Bae DH, Kim CJ, Lee MS (2010) The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer 9:109. doi:10.1186/1476-4598-9-109 PubMedCrossRefGoogle Scholar
  39. Leng S, Chaves P, Koenig K, Walston J (2002) Serum interleukin-6 and hemoglobin as physiological correlates in the geriatric syndrome of frailty: a pilot study. J Am Geriatr Soc 50:1268–1271. doi:10.1046/j.1532-5415.2002.50315.x PubMedCrossRefGoogle Scholar
  40. Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622. doi:10.1007/s00125-007-0916-5 PubMedCrossRefGoogle Scholar
  41. Lustosa LP, Coelho FM, Silva JP, Pereira DS, Parentoni AN, Dias JM, Dias RC, Pereira LS (2010) The effects of a muscle resistance program on the functional capacity, knee extensor muscle strength and plasma levels of IL-6 and TNF-alpha in pre-frail elderly women: a randomized crossover clinical trial—a study protoco. Trials 11:82. doi:10.1186/1745-6215-11-82 PubMedCrossRefGoogle Scholar
  42. Maggio M, Guralnik JM, Longo DL, Ferrucci L (2006) Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 61:575–584PubMedCrossRefGoogle Scholar
  43. Maggio M, Cattabiani C, Lauretani F, Ferrucci L, Luci M, Valenti G, Ceda G (2010) The concept of multiple hormonal dysregulation. Acta Biomed 81(Suppl 1):19–29PubMedGoogle Scholar
  44. Maslov AY, Vijg J (2009) Genome instability, cancer and aging. Biochim Biophys Acta 1790:963–969. doi:10.1016/j.bbagen.2009.03.020 PubMedCrossRefGoogle Scholar
  45. Matteini AM, Walston JD, Bandeen-Roche K, Arking DE, Allen RH, Fried LP, Chakravarti A, Stabler SP, Fallin MD (2010) Transcobalamin-II variants, decreased vitamin B12 availability and increased risk of frailty. J Nutr Health Aging 14:73–77. doi:10.1007/s12603-010-0013-1 PubMedCrossRefGoogle Scholar
  46. Menendez L, Benigno BB, McDonald JF (2004) L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer 3:12. doi:10.1186/1476-4598-3-12 PubMedCrossRefGoogle Scholar
  47. Montesanto A, Lagani V, Martino C, Dato S, De Rango F, Berardelli M, Corsonello A, Mazzei B, Mari V, Lattanzio F, Conforti D, Passarino G (2010) A novel, population-specific approach to define frailty. Age 32:385–395. doi:10.1007/s11357-010-9136-x PubMedCrossRefGoogle Scholar
  48. Moore AZ, Biggs ML, Matteini A, O’Connor A, McGuire S, Beamer BA, Fallin MD, Fried LP, Walston J, Chakravarti A, Arking DE (2010) Polymorphisms in the mitochondrial DNA control region and frailty in older adults. PLoS One 5. doi:10.1371/journalpone.0011069
  49. Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B (2003) Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA 100:1775–1780. doi:10.1073/pnas.0437971100 PubMedCrossRefGoogle Scholar
  50. Rando TA (2010) Epigenetics and aging. Exp Gerontol 45:253–254. doi:10.1016/j.exger.2009.12.007 PubMedCrossRefGoogle Scholar
  51. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261. doi:10.1016/S1568-1637(03)00010-2 PubMedCrossRefGoogle Scholar
  52. Rockwood K, Mitnitski A (2007) Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci 62:722–727PubMedCrossRefGoogle Scholar
  53. Rockwood K, Howlett SE, MacKnight C, Beattie BL, Bergman H, Hébert R, Hogan DB, Wolfson C, McDowell I (2004) Prevalence, attributes, and outcomes of fitness and frailty in community-dwelling older adults: report from the Canadian study of health and aging. J Gerontol A Biol Sci Med Sci 59:1310–1317. doi:10.1093/gerona/59.12.1310 PubMedCrossRefGoogle Scholar
  54. Schalk BW, Visser M, Deeg DJ, Bouter LM (2004) Lower levels of serum albumin and total cholesterol and future decline in functional performance in older persons: the longitudinal aging study Amsterdam. Age Ageing 33:266–272. doi:10.1093/ageing/afh073 PubMedCrossRefGoogle Scholar
  55. Schneider E, Pliushch G, El Hajj N, Galetzka D, Puhl A, Schorsch M, Frauenknecht K, Riepert T, Tresch A, Müller AM, Coerdt W, Zechner U, Haaf T (2010) Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res 38:3880–3890. doi:10.1093/nar/gkq126 PubMedCrossRefGoogle Scholar
  56. Serviddio G, Romano AD, Greco A, Rollo T, Bellanti F, Altomare E, Vendemiale G (2009) Frailty syndrome is associated with altered circulating redox balance and increased markers of oxidative stress. Int J Immunopathol Pharmacol 22:819–827PubMedGoogle Scholar
  57. Shimabukuro M, Sasaki T, Imamura A, Tsujita T, Fuke C, Umekage T, Tochigi M, Hiramatsu K, Miyazaki T, Oda T, Sugimoto J, Jinno Y, Okazaki Y (2006) Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia. J Psychiatr Res 41:1042–1046. doi:10.1016/j.jpsychires.2006.08.006 PubMedCrossRefGoogle Scholar
  58. Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE 2:e895. doi:10.1371/journal.pone.0000895 PubMedCrossRefGoogle Scholar
  59. Sutherland JE, Costa M (2003) Epigenetics and the environment. Ann NY Acad Sci 983:151–160. doi:10.1111/j.1749-6632.2003.tb05970.x PubMedCrossRefGoogle Scholar
  60. Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N (2010) Tissue-specific dysregulation of DNA methylation in aging. Aging Cell 9:506–518. doi:10.1111/j.1474-9726.2010.00577.x PubMedCrossRefGoogle Scholar
  61. Topinková E (2008) Aging, disability and frailty. Ann Nutr Metab 52(Suppl 1):6–11. doi:10.1159/000115340 PubMedGoogle Scholar
  62. Tra J, Kondo T, Lu Q, Kuick R, Hanash S, Richardson B (2002) Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning. Mech Ageing Dev 123:1487–1503. doi:10.1016/S0047-6374(02)00080-5 PubMedCrossRefGoogle Scholar
  63. Walston J, Hadley EC, Ferrucci L, Guralnik JM, Newman AB, Studenski SA, Ershler WB, Harris T, Fried LP (2006) Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc 54:991–1001. doi:10.1111/j.1532-5415.2006.00745.x PubMedCrossRefGoogle Scholar
  64. Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262:9948–9951PubMedGoogle Scholar

Copyright information

© American Aging Association 2011

Authors and Affiliations

  • Dina Bellizzi
    • 1
  • Patrizia D’Aquila
    • 1
  • Alberto Montesanto
    • 1
  • Andrea Corsonello
    • 2
  • Vincenzo Mari
    • 2
  • Bruno Mazzei
    • 2
  • Fabrizia Lattanzio
    • 3
  • Giuseppe Passarino
    • 1
  1. 1.Department of Cell BiologyUniversity of CalabriaRendeItaly
  2. 2.Italian National Research Center on AgingCosenzaItaly
  3. 3.Italian National Research Center on AgingAnconaItaly

Personalised recommendations